Abstract

The goal of our investigation is to design a low-speckle laser line generator based on partial spatially coherent laser light. Low speckle is achieved by exploiting a regime of strongly reduced spatial coherence of a broad-area vertical-cavity surface-emitting laser, which is used as the line generator’s light source. A comparative experimental study of different optical configurations is conducted, leading to the design of an optimal optical system. The results of our study are also valid for other sources of partial spatially coherent emission.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–243 (2004).
    [CrossRef]
  2. F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
    [CrossRef]
  3. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2006).
  4. R. Baribeau and M. Rioux, “Influence of speckle on laser range finders,” Appl. Opt. 30, 2873–2878 (1991).
    [CrossRef]
  5. R. G. Dorsch, G. Hausler, and J. M. Herrmann, “Laser triangulation: fundamental uncertainty in distance measurement,” Appl. Opt. 33, 1306–1314 (1994).
    [CrossRef]
  6. L. Wang, T. Tschudi, T. Halldorsson, and P. R. Petursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770–1775 (1998).
    [CrossRef]
  7. Y. Kuratomi, K. Sekiya, H. Satoh, T. Tomiyama, T. Kawakami, B. Katagiri, Y. Suzuki, and T. Uchida, “Speckle reduction mechanism in laser rear projection displays using a small moving diffuser,” J. Opt. Soc. Am. A 27, 1812–1817 (2010).
    [CrossRef]
  8. M. N. Akram, V. Kartashov, and Z. Tong, “Speckle reduction in line-scan laser projectors using binary phase codes,” Opt. Lett. 35, 444–446 (2010).
    [CrossRef]
  9. F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008).
    [CrossRef]
  10. F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009).
    [CrossRef]
  11. F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798 (2009).
    [CrossRef]
  12. C. Wilsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, and Applications (Cambridge University, 1999).
  13. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006).
    [CrossRef]
  14. A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
    [CrossRef]
  15. M. Peeters, G. Verschaffelt, H. Thienpont, S. K. Mandre, I. Fischer, and M. Grabherr, “Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers,” Opt. Express 13, 9337–9345 (2005).
    [CrossRef]
  16. S. K. Mandre, W. Elsässer, I. Fischer, M. Peeters, and G. Verschaffelt, “Evolution from modal to spatially incoherent emission of a broad-area VCSEL,” Opt. Express 16, 4452–4464 (2008).
    [CrossRef]
  17. G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009).
    [CrossRef]
  18. G. Craggs, G. Verschaffelt, S. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15, 555–562 (2009).
    [CrossRef]
  19. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  20. P. Vahimaa and J. Turunen, “Finite-elementary-source model for partially coherent radiation,” Opt. Express 14, 1376–1381 (2006).
    [CrossRef]
  21. C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
    [CrossRef]
  22. C. Degen, I. Fischer, and W. Elsässer, “Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects,” Opt. Express 5, 38–47 (1999).
    [CrossRef]
  23. M. Peeters, G. Verschaffelt, J. Speybrouck, J. Danckaert, H. Thienpont, P. Vahimaa, and J. Turunen, “Propagation of spatially partially coherent emission from a vertical-cavity surface-emitting laser,” Opt. Lett. 31, 1178–1180 (2006).
  24. F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” Appl. Opt. 48, 1316–1321 (2009).
    [CrossRef]
  25. H. W. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef]
  26. H. W. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).
  27. J. Arnaud, “Representation of Gaussian beams by complex rays,” Appl. Opt. 24, 538–543 (1985).
    [CrossRef]
  28. T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, “Engineered microlens arrays provide new control for display and lighting applications,” Photon. Spectra 38, 58–61 (2004).

2010 (2)

2009 (5)

F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798 (2009).
[CrossRef]

F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” Appl. Opt. 48, 1316–1321 (2009).
[CrossRef]

F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009).
[CrossRef]

G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009).
[CrossRef]

G. Craggs, G. Verschaffelt, S. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15, 555–562 (2009).
[CrossRef]

2008 (2)

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008).
[CrossRef]

S. K. Mandre, W. Elsässer, I. Fischer, M. Peeters, and G. Verschaffelt, “Evolution from modal to spatially incoherent emission of a broad-area VCSEL,” Opt. Express 16, 4452–4464 (2008).
[CrossRef]

2006 (3)

2005 (1)

2004 (2)

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, “Engineered microlens arrays provide new control for display and lighting applications,” Photon. Spectra 38, 58–61 (2004).

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–243 (2004).
[CrossRef]

2001 (1)

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

2000 (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

1999 (1)

1998 (1)

1994 (1)

1991 (1)

1990 (1)

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

1985 (1)

1966 (1)

1965 (1)

H. W. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).

Akram, M. N.

Arnaud, J.

Baribeau, R.

Bastian, G.

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008).
[CrossRef]

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–243 (2004).
[CrossRef]

Brown, G. M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Chakmakjian, S.

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, “Engineered microlens arrays provide new control for display and lighting applications,” Photon. Spectra 38, 58–61 (2004).

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Chen, F.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Choquette, K. D.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Coldren, L. A.

C. Wilsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, and Applications (Cambridge University, 1999).

Craggs, G.

F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009).
[CrossRef]

F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798 (2009).
[CrossRef]

G. Craggs, G. Verschaffelt, S. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15, 555–562 (2009).
[CrossRef]

G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009).
[CrossRef]

Dalberth, M. J.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Danckaert, J.

Degen, C.

Dorsch, R. G.

Elsässer, W.

Fischer, I.

G. Craggs, G. Verschaffelt, S. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15, 555–562 (2009).
[CrossRef]

G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009).
[CrossRef]

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008).
[CrossRef]

S. K. Mandre, W. Elsässer, I. Fischer, M. Peeters, and G. Verschaffelt, “Evolution from modal to spatially incoherent emission of a broad-area VCSEL,” Opt. Express 16, 4452–4464 (2008).
[CrossRef]

M. Peeters, G. Verschaffelt, H. Thienpont, S. K. Mandre, I. Fischer, and M. Grabherr, “Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers,” Opt. Express 13, 9337–9345 (2005).
[CrossRef]

C. Degen, I. Fischer, and W. Elsässer, “Transverse modes in oxide confined VCSELs: influence of pump profile, spatial hole burning, and thermal effects,” Opt. Express 5, 38–47 (1999).
[CrossRef]

Florez, L. T.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Geib, K. M.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Glöckler, F.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2006).

Grabherr, M.

Halldorsson, T.

Harbison, J. P.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Hausler, G.

Herrmann, J. M.

Jackson, A. W.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Kartashov, V.

Katagiri, B.

Kawakami, T.

Kisker, D. W.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Klem, J. F.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Kogelnik, H. W.

H. W. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
[CrossRef]

H. W. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).

Koyama, F.

Kuratomi, Y.

Lemmer, U.

F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798 (2009).
[CrossRef]

F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009).
[CrossRef]

F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” Appl. Opt. 48, 1316–1321 (2009).
[CrossRef]

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008).
[CrossRef]

Li, T.

Malone, K. J.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Mandre, S.

G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009).
[CrossRef]

G. Craggs, G. Verschaffelt, S. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15, 555–562 (2009).
[CrossRef]

Mandre, S. K.

Meuret, Y.

F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009).
[CrossRef]

F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798 (2009).
[CrossRef]

Morris, G. M.

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, “Engineered microlens arrays provide new control for display and lighting applications,” Photon. Spectra 38, 58–61 (2004).

Naone, R. L.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Orenstein, M.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Peeters, M.

G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009).
[CrossRef]

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008).
[CrossRef]

S. K. Mandre, W. Elsässer, I. Fischer, M. Peeters, and G. Verschaffelt, “Evolution from modal to spatially incoherent emission of a broad-area VCSEL,” Opt. Express 16, 4452–4464 (2008).
[CrossRef]

M. Peeters, G. Verschaffelt, J. Speybrouck, J. Danckaert, H. Thienpont, P. Vahimaa, and J. Turunen, “Propagation of spatially partially coherent emission from a vertical-cavity surface-emitting laser,” Opt. Lett. 31, 1178–1180 (2006).

M. Peeters, G. Verschaffelt, H. Thienpont, S. K. Mandre, I. Fischer, and M. Grabherr, “Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers,” Opt. Express 13, 9337–9345 (2005).
[CrossRef]

Petursson, P. R.

Riechert, F.

F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” Appl. Opt. 48, 1316–1321 (2009).
[CrossRef]

F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009).
[CrossRef]

F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798 (2009).
[CrossRef]

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008).
[CrossRef]

Rioux, M.

Sales, T. R. M.

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, “Engineered microlens arrays provide new control for display and lighting applications,” Photon. Spectra 38, 58–61 (2004).

Satoh, H.

Schertler, D. J.

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, “Engineered microlens arrays provide new control for display and lighting applications,” Photon. Spectra 38, 58–61 (2004).

Sekiya, K.

Serkland, D. K.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Smith, J. M.

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

Song, M.

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Speybrouck, J.

Stoffel, N. G.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Suzuki, Y.

Temkin, H.

C. Wilsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, and Applications (Cambridge University, 1999).

Thienpont, H.

F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009).
[CrossRef]

F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798 (2009).
[CrossRef]

G. Craggs, G. Verschaffelt, S. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15, 555–562 (2009).
[CrossRef]

G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009).
[CrossRef]

M. Peeters, G. Verschaffelt, J. Speybrouck, J. Danckaert, H. Thienpont, P. Vahimaa, and J. Turunen, “Propagation of spatially partially coherent emission from a vertical-cavity surface-emitting laser,” Opt. Lett. 31, 1178–1180 (2006).

M. Peeters, G. Verschaffelt, H. Thienpont, S. K. Mandre, I. Fischer, and M. Grabherr, “Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers,” Opt. Express 13, 9337–9345 (2005).
[CrossRef]

Tomiyama, T.

Tong, Z.

Tschudi, T.

Turunen, J.

Uchida, T.

Vahimaa, P.

Van Giel, B.

Verschaffelt, G.

F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792–798 (2009).
[CrossRef]

G. Craggs, G. Verschaffelt, S. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15, 555–562 (2009).
[CrossRef]

F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009).
[CrossRef]

G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009).
[CrossRef]

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008).
[CrossRef]

S. K. Mandre, W. Elsässer, I. Fischer, M. Peeters, and G. Verschaffelt, “Evolution from modal to spatially incoherent emission of a broad-area VCSEL,” Opt. Express 16, 4452–4464 (2008).
[CrossRef]

M. Peeters, G. Verschaffelt, J. Speybrouck, J. Danckaert, H. Thienpont, P. Vahimaa, and J. Turunen, “Propagation of spatially partially coherent emission from a vertical-cavity surface-emitting laser,” Opt. Lett. 31, 1178–1180 (2006).

M. Peeters, G. Verschaffelt, H. Thienpont, S. K. Mandre, I. Fischer, and M. Grabherr, “Spatial decoherence of pulsed broad-area vertical-cavity surface-emitting lasers,” Opt. Express 13, 9337–9345 (2005).
[CrossRef]

Von Lehmen, A.

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Wang, L.

Wilsen, C.

C. Wilsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, and Applications (Cambridge University, 1999).

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Appl. Opt. (7)

Appl. Phys. Lett. (1)

C. J. Chang-Hasnain, M. Orenstein, A. Von Lehmen, L. T. Florez, J. P. Harbison, and N. G. Stoffel, “Transverse mode characteristics of vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 57, 218–220 (1990).
[CrossRef]

Bell Syst. Tech. J. (1)

H. W. Kogelnik, “Imaging of optical modes—resonators with internal lenses,” Bell Syst. Tech. J. 44, 455–494 (1965).

Electron. Lett. (1)

A. W. Jackson, R. L. Naone, M. J. Dalberth, J. M. Smith, K. J. Malone, D. W. Kisker, J. F. Klem, K. D. Choquette, D. K. Serkland, and K. M. Geib, “OC-48 capable InGaAsN vertical cavity lasers,” Electron. Lett. 37, 355–356(2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Verschaffelt, G. Craggs, M. Peeters, S. Mandre, H. Thienpont, and I. Fischer, “Spatially resolved characterization of the coherence area in the incoherent emission regime of a broad-area vertical-cavity surface-emitting laser,” IEEE J. Quantum Electron. 45, 249–255 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Craggs, G. Verschaffelt, S. Mandre, H. Thienpont, and I. Fischer, “Thermally controlled onset of spatially incoherent emission in a broad-area vertical-cavity surface-emitting laser,” IEEE J. Sel. Top. Quantum Electron. 15, 555–562 (2009).
[CrossRef]

J. Electron. Imaging (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13, 231–243 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

F. Riechert, G. Verschaffelt, M. Peeters, G. Bastian, U. Lemmer, and I. Fischer, “Speckle characteristics of a broad-area VCSEL in the incoherent emission regime,” Opt. Commun. 281, 4424–4431 (2008).
[CrossRef]

Opt. Eng. (1)

F. Chen, G. M. Brown, and M. Song, “Overview of three-dimensional shape measurement using optical methods,” Opt. Eng. 39, 10–22 (2000).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Photon. Spectra (1)

T. R. M. Sales, S. Chakmakjian, G. M. Morris, and D. J. Schertler, “Engineered microlens arrays provide new control for display and lighting applications,” Photon. Spectra 38, 58–61 (2004).

Photon. Technol. Lett. (1)

F. Riechert, G. Craggs, Y. Meuret, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Far-field nonmodal laser emission for low-speckle laser projection,” Photon. Technol. Lett. 21, 1487–1489 (2009).
[CrossRef]

Other (3)

C. Wilsen, H. Temkin, and L. A. Coldren, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, and Applications (Cambridge University, 1999).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Co., 2006).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a) Near-field and (b) far-field intensity distributions of a BA-VCSEL operated in its spatially incoherent emission regime.

Fig. 2.
Fig. 2.

Line-generator setup, consisting of the VCSEL laser source, the line-generating optical device, a paper screen on which the line is projected, and a CCD camera to capture the line. A set of lenses is also used in order to first collimate the laser beam before the line generator and then focus the line on the screen.

Fig. 3.
Fig. 3.

Line-generator configurations: (a) cylindrical lens, (b) tandem lens array, (c) engineered diffuser.

Fig. 4.
Fig. 4.

Desired line profile: uniform intensity profile across the length and Gaussian intensity profile across the width.

Fig. 5.
Fig. 5.

Simulation results: (a), (b) Gaussian beamlet spread in the source and detector plane, respectively, for the single cylindrical lens line generator. Next to and underneath (b), the cross cuts of the field in X and Y are plotted. (c), (d) Same for the tandem lens array line generator. The dashed lines in (c) indicate the boundaries of one microlens. The dashed lines in (d) indicate the beamlets that pass through different microlenses of the tandem lens array.

Fig. 6.
Fig. 6.

Laser line intensity distribution (left), its cross section in length (top right) and width (bottom right) for a single cylindrical lens and a spatially incoherent BA-VCSEL.

Fig. 7.
Fig. 7.

Laser line intensity distribution (left), its cross-section in length (top right) and width (bottom right) for a cylindrical lens array and a spatially incoherent BA-VCSEL.

Fig. 8.
Fig. 8.

Speckle contrast as a function of the VCSEL beam size on the tandem lens array. The beam size is varied from 700 μm to 16 mm. The full line indicates the theoretically predicted speckle values, which coincide well with the measured values (squares).

Fig. 9.
Fig. 9.

Laser line intensity distribution (left), its cross section in length (top right) and width (bottom right) for an engineered diffuser illuminated by a spatially incoherent BA-VCSEL.

Tables (2)

Tables Icon

Table 1. Tandem Lens Array Speckle Contrast Reduction Factor Because of the Beam’s Spatial Incoherence

Tables Icon

Table 2. Speckle Contrast Summary

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

W(ρ1,ρ2,z0)=S(ρ1,z0)S(ρ2,z0)μ(ρ1,ρ2,z0),
W(x1,y1,x2,y2)=mAnAS(xm,ym)×exp[(x1mΔ)2σ2]exp[(x2mΔ)2σ2]×exp[(y1mΔ)2σ2]exp[(y2mΔ)2σ2],
C=σI,
C=[1+2π2(δλλ¯)2(σvλ¯)2]14,
sinθ2D2zNAimage,

Metrics