Abstract

When designing a laser scanning picoprojector, one has to deal with important aspects that do not strictly involve design of hardware and software. We have identified two issues that play a decisive role in the final specifications of a laser scanning picoprojector: the characteristics of the optical displaying system and color management. Regarding the optical system, we have studied the diameter requirements of the laser beam emitted from a picoprojector from the point of view of image quality. Resolution is assessed by calculating the image modulation produced by a projected laser spot over a range of projection distances and image sizes. We also show that a suitable election of the RGB wavelengths increases the lumens-per-watt ratio and thereby improves efficiency of a laser-based picoprojector.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Dickson, “Pico projectors: one reason bigger isn’t better,” IN1004722WH (In-Stat, 2010).
  2. M. Freeman, M. Champion, and S. Madhavan, “Scanned laser picoprojectors: seeing the big picture (with a small device),” Opt. Photon. News 20, 28–34 (2009).
    [CrossRef]
  3. K. M. Guttag, S. Hurley, and B. Mei, “Distinguished paper: laser+LCOS technology revolution,” SID Int. Symp. Dig. Tech. Pap. 42, 536–539 (2011).
    [CrossRef]
  4. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010).
    [CrossRef]
  5. F. A. Fernández, S. E. Day, H. De Smet, A. Manabe, and M. Robinson, “Guest editorial special issue on LCoS technology,” J. Disp. Technol. 7, 109–111 (2011).
    [CrossRef]
  6. L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
    [CrossRef]
  7. Microvision, picoprojector Microvision Show WX user guide, http://www.microvision.com/showwx/pdfs/showwx_userguide.pdf .
  8. N. Abelé, “Laser micro-projector based on MEMS mirror, for high brightness environment,” presented at the CTI Micro and Nano Technologies Event, Neuchâtel, Switzerland, 11November2009.
  9. J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).
  10. C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
    [CrossRef]
  11. W. Koechner, Solid State Laser Engineering (Springer-Verlag, 1988).
  12. A. E. Siegman, Lasers (University Science, 1986), p. 1283.
  13. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef]
  14. H. Urey, N. Nestorovic, B. Ng, and A. Gross, “Optics designs and system MTF for laser scanning displays,” Proc. SPIE 3689, 238–248 (1999).
    [CrossRef]
  15. Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
    [CrossRef]
  16. J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008).
    [CrossRef]
  17. A. D. Broadbent, “A critical review of the development of the CIE1931 RGB color-matching functions,” Color Res. Appl. 29, 267–272 (2004).
    [CrossRef]
  18. E. Buckley, “Laser wavelength choices for pico-projector applications,” J. Disp. Technol. 7, 402–406 (2011).
    [CrossRef]
  19. E. Buckley, “Eye-safety analysis of current laser-based scanned-beam projection systems,” J. Soc. Inf. Disp. 18, 944–951 (2010).
    [CrossRef]
  20. C. H. Brown Elliott, T. L. Credelle, and M. F. Higgins, “Adding a white subpixel,” J. Soc. Inf. Disp. 21, 26–31 (2005).
  21. J. L. Harris, A. C. Bryce, O. Kowalski, J. Marsh, T. Jouhti, M. Pessa, and M. Hopkinson, “Selective quantum well intermixing of 1.22 and 1.55 μm GaInNAs laser material,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuJ7.
  22. S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.
  23. Epycristals, http://epicrystals.com/ .
  24. E. F. Schubert, Light Emitting Diodes (Cambridge University, 2003).
  25. Society of Motion Picture and Television Engineers, “Derivation of basic television color equations,” Recommended Practices (Society of Motion Picture and Television Engineers), pp. 177–1993.

2012

J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).

2011

F. A. Fernández, S. E. Day, H. De Smet, A. Manabe, and M. Robinson, “Guest editorial special issue on LCoS technology,” J. Disp. Technol. 7, 109–111 (2011).
[CrossRef]

E. Buckley, “Laser wavelength choices for pico-projector applications,” J. Disp. Technol. 7, 402–406 (2011).
[CrossRef]

K. M. Guttag, S. Hurley, and B. Mei, “Distinguished paper: laser+LCOS technology revolution,” SID Int. Symp. Dig. Tech. Pap. 42, 536–539 (2011).
[CrossRef]

2010

K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010).
[CrossRef]

E. Buckley, “Eye-safety analysis of current laser-based scanned-beam projection systems,” J. Soc. Inf. Disp. 18, 944–951 (2010).
[CrossRef]

2009

C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
[CrossRef]

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser picoprojectors: seeing the big picture (with a small device),” Opt. Photon. News 20, 28–34 (2009).
[CrossRef]

2008

J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008).
[CrossRef]

2006

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

2005

C. H. Brown Elliott, T. L. Credelle, and M. F. Higgins, “Adding a white subpixel,” J. Soc. Inf. Disp. 21, 26–31 (2005).

2004

A. D. Broadbent, “A critical review of the development of the CIE1931 RGB color-matching functions,” Color Res. Appl. 29, 267–272 (2004).
[CrossRef]

1999

H. Urey, N. Nestorovic, B. Ng, and A. Gross, “Optics designs and system MTF for laser scanning displays,” Proc. SPIE 3689, 238–248 (1999).
[CrossRef]

1997

L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
[CrossRef]

1966

Abelé, N.

C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
[CrossRef]

N. Abelé, “Laser micro-projector based on MEMS mirror, for high brightness environment,” presented at the CTI Micro and Nano Technologies Event, Neuchâtel, Switzerland, 11November2009.

Broadbent, A. D.

A. D. Broadbent, “A critical review of the development of the CIE1931 RGB color-matching functions,” Color Res. Appl. 29, 267–272 (2004).
[CrossRef]

Brown Elliott, C. H.

C. H. Brown Elliott, T. L. Credelle, and M. F. Higgins, “Adding a white subpixel,” J. Soc. Inf. Disp. 21, 26–31 (2005).

Bryce, A. C.

J. L. Harris, A. C. Bryce, O. Kowalski, J. Marsh, T. Jouhti, M. Pessa, and M. Hopkinson, “Selective quantum well intermixing of 1.22 and 1.55 μm GaInNAs laser material,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuJ7.

Buckley, E.

E. Buckley, “Laser wavelength choices for pico-projector applications,” J. Disp. Technol. 7, 402–406 (2011).
[CrossRef]

E. Buckley, “Eye-safety analysis of current laser-based scanned-beam projection systems,” J. Soc. Inf. Disp. 18, 944–951 (2010).
[CrossRef]

Calvez, S.

S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.

Champion, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser picoprojectors: seeing the big picture (with a small device),” Opt. Photon. News 20, 28–34 (2009).
[CrossRef]

Chellappan, K. V.

Cho, J.-W.

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

Choi, W. K.

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

Credelle, T. L.

C. H. Brown Elliott, T. L. Credelle, and M. F. Higgins, “Adding a white subpixel,” J. Soc. Inf. Disp. 21, 26–31 (2005).

Dallmann, H. G.

J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).

Dawson, M. D.

S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.

Day, S. E.

F. A. Fernández, S. E. Day, H. De Smet, A. Manabe, and M. Robinson, “Guest editorial special issue on LCoS technology,” J. Disp. Technol. 7, 109–111 (2011).
[CrossRef]

De Smet, H.

F. A. Fernández, S. E. Day, H. De Smet, A. Manabe, and M. Robinson, “Guest editorial special issue on LCoS technology,” J. Disp. Technol. 7, 109–111 (2011).
[CrossRef]

Dickson, F.

F. Dickson, “Pico projectors: one reason bigger isn’t better,” IN1004722WH (In-Stat, 2010).

Erden, E.

Fabre, L.

C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
[CrossRef]

Fernández, F. A.

F. A. Fernández, S. E. Day, H. De Smet, A. Manabe, and M. Robinson, “Guest editorial special issue on LCoS technology,” J. Disp. Technol. 7, 109–111 (2011).
[CrossRef]

Freeman, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser picoprojectors: seeing the big picture (with a small device),” Opt. Photon. News 20, 28–34 (2009).
[CrossRef]

Gerwig, C.

J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).

Giet, S.

S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.

Grahmann, J.

J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).

Grasshoff, T.

J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).

Gross, A.

H. Urey, N. Nestorovic, B. Ng, and A. Gross, “Optics designs and system MTF for laser scanning displays,” Proc. SPIE 3689, 238–248 (1999).
[CrossRef]

Guttag, K. M.

K. M. Guttag, S. Hurley, and B. Mei, “Distinguished paper: laser+LCOS technology revolution,” SID Int. Symp. Dig. Tech. Pap. 42, 536–539 (2011).
[CrossRef]

Harris, J. L.

J. L. Harris, A. C. Bryce, O. Kowalski, J. Marsh, T. Jouhti, M. Pessa, and M. Hopkinson, “Selective quantum well intermixing of 1.22 and 1.55 μm GaInNAs laser material,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuJ7.

Hastie, J. E.

S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.

Higgins, M. F.

C. H. Brown Elliott, T. L. Credelle, and M. F. Higgins, “Adding a white subpixel,” J. Soc. Inf. Disp. 21, 26–31 (2005).

Hopkinson, M.

J. L. Harris, A. C. Bryce, O. Kowalski, J. Marsh, T. Jouhti, M. Pessa, and M. Hopkinson, “Selective quantum well intermixing of 1.22 and 1.55 μm GaInNAs laser material,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuJ7.

Hornbeck, L. J.

L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
[CrossRef]

Hurley, S.

K. M. Guttag, S. Hurley, and B. Mei, “Distinguished paper: laser+LCOS technology revolution,” SID Int. Symp. Dig. Tech. Pap. 42, 536–539 (2011).
[CrossRef]

Jeong, H.-G.

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

Jouhti, T.

S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.

J. L. Harris, A. C. Bryce, O. Kowalski, J. Marsh, T. Jouhti, M. Pessa, and M. Hopkinson, “Selective quantum well intermixing of 1.22 and 1.55 μm GaInNAs laser material,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuJ7.

Kayal, M.

C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
[CrossRef]

Kechana, F.

C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
[CrossRef]

Kemp, A. J.

S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.

Kilcher, L.

C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
[CrossRef]

Kim, J.-W.

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

Ko, Y.-C.

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer-Verlag, 1988).

Kogelnik, H.

Konttinen, J.

S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.

Kowalski, O.

J. L. Harris, A. C. Bryce, O. Kowalski, J. Marsh, T. Jouhti, M. Pessa, and M. Hopkinson, “Selective quantum well intermixing of 1.22 and 1.55 μm GaInNAs laser material,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuJ7.

Lee, J.-H.

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

Li, T.

Lo Conte, F.

C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
[CrossRef]

Madhavan, S.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser picoprojectors: seeing the big picture (with a small device),” Opt. Photon. News 20, 28–34 (2009).
[CrossRef]

Manabe, A.

F. A. Fernández, S. E. Day, H. De Smet, A. Manabe, and M. Robinson, “Guest editorial special issue on LCoS technology,” J. Disp. Technol. 7, 109–111 (2011).
[CrossRef]

Marsh, J.

J. L. Harris, A. C. Bryce, O. Kowalski, J. Marsh, T. Jouhti, M. Pessa, and M. Hopkinson, “Selective quantum well intermixing of 1.22 and 1.55 μm GaInNAs laser material,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuJ7.

Mei, B.

K. M. Guttag, S. Hurley, and B. Mei, “Distinguished paper: laser+LCOS technology revolution,” SID Int. Symp. Dig. Tech. Pap. 42, 536–539 (2011).
[CrossRef]

Meyn, J.-P.

J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008).
[CrossRef]

Mun, Y.-K.

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

Nestorovic, N.

H. Urey, N. Nestorovic, B. Ng, and A. Gross, “Optics designs and system MTF for laser scanning displays,” Proc. SPIE 3689, 238–248 (1999).
[CrossRef]

Ng, B.

H. Urey, N. Nestorovic, B. Ng, and A. Gross, “Optics designs and system MTF for laser scanning displays,” Proc. SPIE 3689, 238–248 (1999).
[CrossRef]

Park, Y.-H.

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

Pessa, M.

S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.

J. L. Harris, A. C. Bryce, O. Kowalski, J. Marsh, T. Jouhti, M. Pessa, and M. Hopkinson, “Selective quantum well intermixing of 1.22 and 1.55 μm GaInNAs laser material,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuJ7.

Robinson, M.

F. A. Fernández, S. E. Day, H. De Smet, A. Manabe, and M. Robinson, “Guest editorial special issue on LCoS technology,” J. Disp. Technol. 7, 109–111 (2011).
[CrossRef]

Schubert, E. F.

E. F. Schubert, Light Emitting Diodes (Cambridge University, 2003).

Shenk, H.

J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986), p. 1283.

Urey, H.

K. V. Chellappan, E. Erden, and H. Urey, “Laser-based displays: a review,” Appl. Opt. 49, F79–F98 (2010).
[CrossRef]

H. Urey, N. Nestorovic, B. Ng, and A. Gross, “Optics designs and system MTF for laser scanning displays,” Proc. SPIE 3689, 238–248 (1999).
[CrossRef]

Wildenhain, M.

J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).

Winter, C.

C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
[CrossRef]

Wolter, A.

J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).

Yoo, J.-B.

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

Appl. Opt.

Color Res. Appl.

A. D. Broadbent, “A critical review of the development of the CIE1931 RGB color-matching functions,” Color Res. Appl. 29, 267–272 (2004).
[CrossRef]

Eur. J. Phys.

J.-P. Meyn, “Colour mixing based on daylight,” Eur. J. Phys. 29, 1017–1031 (2008).
[CrossRef]

J. Disp. Technol.

E. Buckley, “Laser wavelength choices for pico-projector applications,” J. Disp. Technol. 7, 402–406 (2011).
[CrossRef]

F. A. Fernández, S. E. Day, H. De Smet, A. Manabe, and M. Robinson, “Guest editorial special issue on LCoS technology,” J. Disp. Technol. 7, 109–111 (2011).
[CrossRef]

J. Soc. Inf. Disp.

E. Buckley, “Eye-safety analysis of current laser-based scanned-beam projection systems,” J. Soc. Inf. Disp. 18, 944–951 (2010).
[CrossRef]

C. H. Brown Elliott, T. L. Credelle, and M. F. Higgins, “Adding a white subpixel,” J. Soc. Inf. Disp. 21, 26–31 (2005).

Opt. Photon. News

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser picoprojectors: seeing the big picture (with a small device),” Opt. Photon. News 20, 28–34 (2009).
[CrossRef]

Proc. SPIE

H. Urey, N. Nestorovic, B. Ng, and A. Gross, “Optics designs and system MTF for laser scanning displays,” Proc. SPIE 3689, 238–248 (1999).
[CrossRef]

L. J. Hornbeck, “Digital light processing for high-brightness, high-resolution applications,” Proc. SPIE 3013, 27–40 (1997).
[CrossRef]

J. Grahmann, M. Wildenhain, T. Grasshoff, C. Gerwig, H. G. Dallmann, A. Wolter, and H. Shenk, “Laser projector solution based on two 1D resonant micro scanning mirrors assembled in a low vertical distortion scan head,” Proc. SPIE 8252, 825205 (2012).

Procedia Chem.

C. Winter, L. Fabre, F. Lo Conte, L. Kilcher, F. Kechana, N. Abelé, and M. Kayal, “Micro-beamer based on MEMS micro-mirrors and laser light source,” Procedia Chem. 1, 1311–1314 (2009).
[CrossRef]

Sens. Actuators A

Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, and J.-H. Lee, “Eye-type scanning mirror with dual vertical combs for laser display,” Sens. Actuators A 126, 218–226 (2006).
[CrossRef]

SID Int. Symp. Dig. Tech. Pap.

K. M. Guttag, S. Hurley, and B. Mei, “Distinguished paper: laser+LCOS technology revolution,” SID Int. Symp. Dig. Tech. Pap. 42, 536–539 (2011).
[CrossRef]

Other

W. Koechner, Solid State Laser Engineering (Springer-Verlag, 1988).

A. E. Siegman, Lasers (University Science, 1986), p. 1283.

Microvision, picoprojector Microvision Show WX user guide, http://www.microvision.com/showwx/pdfs/showwx_userguide.pdf .

N. Abelé, “Laser micro-projector based on MEMS mirror, for high brightness environment,” presented at the CTI Micro and Nano Technologies Event, Neuchâtel, Switzerland, 11November2009.

J. L. Harris, A. C. Bryce, O. Kowalski, J. Marsh, T. Jouhti, M. Pessa, and M. Hopkinson, “Selective quantum well intermixing of 1.22 and 1.55 μm GaInNAs laser material,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CTuJ7.

S. Calvez, S. Giet, A. J. Kemp, J. E. Hastie, M. D. Dawson, T. Jouhti, J. Konttinen, and M. Pessa, “Tunable red laser emission by intra-cavity frequency-doubling of a GaInNAs VECSEL,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMFF2.

Epycristals, http://epicrystals.com/ .

E. F. Schubert, Light Emitting Diodes (Cambridge University, 2003).

Society of Motion Picture and Television Engineers, “Derivation of basic television color equations,” Recommended Practices (Society of Motion Picture and Television Engineers), pp. 177–1993.

F. Dickson, “Pico projectors: one reason bigger isn’t better,” IN1004722WH (In-Stat, 2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Interrelating parameters of an LBS picoprojector.

Fig. 2.
Fig. 2.

(Top) Divergence of a Gaussian beam; (a) Divergence of a 1 mm diameter Gaussian laser beam (λ=532nm, M2=1) measured at the 1/e2 intensity point; and (b) profile of a similar beam but one that has been focused to produce a beam waist 512 mm from the output. The resulting waist size is 0.37 mm.

Fig. 3.
Fig. 3.

Projected spot size as a function of initial beam diameter, measured at the 1/e2 intensity point, for projection distances of 250, 500, and 1000 mm (λ=532nm, M2=1).

Fig. 4.
Fig. 4.

Intensity profiles of areas of dense lines formed by the overlap of Gaussian beams on a screen 512 mm from the projector. (a) Profile resulting from the projection of a 1 mm diameter beam (diverging to 1.06 mm) on a pitch of 0.88 mm; (b) profile resulting from the same beam as in a with a pitch of 0.44 mm; (c) profile resulting from the projection of a 1 mm diameter beam (focused to produce a beam waist of 0.37 mm) on a pitch of 0.88 mm; (d) profile resulting from the same beam as in (c) with a pitch of 0.44 mm. Note that, in each case, the thick black lines represent the sum of all the individual Gaussian beams, which are themselves shown as thin lines.

Fig. 5.
Fig. 5.

Possible locations of a Gaussian beam waist for initial beam diameters, measured at the 1/e2 intensity point, of 0.5 to 1.25 mm.

Fig. 6.
Fig. 6.

Summary of modulation calculations for various beam diameters, in millimeters, measured at the 1/e2 intensity point, waist positions, and projection distances.

Fig. 7.
Fig. 7.

Summary of modulation calculations for various beam diameters, measured at the 1/e2 intensity point, waist positions, and projection distances.

Fig. 8.
Fig. 8.

Chromaticity coordinate plot showing the color gamut contour (right) of (a) 400, 520, and 700 nm; (b) 487, 520, and 590 nm; (c) 464, 540, and 610 nm; (d) 444, 567, and 610 nm; (e) 442, 532, and 642 nm; and the photopic sensitivity curve (left) with chosen wavelengths indicated by arrows on the curve.

Fig. 9.
Fig. 9.

Flux (solid line) versus efficacy (dashed line) versus wavelength for (a) red laser when blue and green are fixed at 444 and 532 nm, respectively, (b) green laser when blue and red are fixed at 444 and 620 nm respectively, and (c) blue laser when green and red are fixed at 532 nm and 620 nm, respectively.

Tables (1)

Tables Icon

Table 1. Relevant Ratios for Different Wavelength Choices

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

w2(z)=wo2[1+(λzπwo2)],
zR=πωo2λ.
M=IMaxIMinIMax+IMin.

Metrics