Abstract

A color transmission approach between a computer display and a color computer-generated holography (CCGH) colorimetric system is proposed based on color matching theory. Firstly, the conversion between color quantities of a computer display and a CCGH colorimetric system is discussed based on color matching theory. Secondly, the isochromatic transfer relationship of color quantity and amplitude of the object light field is proposed. Thirdly, the color object light field was encoded into a hologram, and then the hologram was reconstructed numerically. The simulation results demonstrate that our novel approach is feasible.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Leseberg, “Computer-generated three-dimensional image holograms,” Appl. Opt. 31, 223–229 (1992).
    [CrossRef]
  2. H. Wang, Y. Li, H. Z. Jin, C. F. Ying, X. Y. Su, and W. J. Chen, “Three-dimensional visualization of shape measurement data based on a computer generated hologram,” J. Opt. A: Pure Appl. Opt. 5, S195–S199 (2003).
    [CrossRef]
  3. W. J. Dallas and A. W. Lohmann, “Holography, techniques: computer-generated holograms,” in Encyclopedia of Modern Optics, B. D. Guenther, ed. (Elsevier, 2005), pp. 72–79.
  4. Y. S. Kim, T. Kim, T. C. Poon, and J. T. Kim, “Three-dimensional display of a horizontal-parallax-only hologram,” Appl. Opt. 50, B81–B87 (2011).
    [CrossRef]
  5. F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
    [CrossRef]
  6. D. Abookasis and J. Rosen, “Three types of computer-generated hologram synthesized from multiple angular viewpoints of a three-dimensional scene,” Appl. Opt. 45, 6533–5638 (2006).
    [CrossRef]
  7. T. Shimobaba, J. Miura, and T. Ito, “A computer aided design tool for developing an electroholographic display,” J. Opt. A: Pure Appl. Opt 11, 085408 (2009).
    [CrossRef]
  8. P.-A. Blanche, A. Bablumian, and R. Voorakaranam, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
    [CrossRef]
  9. M. Oikawa, T. Shimobaba, N. Masuda, and T. Ito, “Computer-generated hologram using an approximate Fresnel integral,” J. Opt. 13, 075405 (2011).
    [CrossRef]
  10. Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Express 12, 6246–6251 (2004).
    [CrossRef]
  11. Y. Sando, M. Itoh, and T. Yatagai, “Color computer-generated holograms from projection images,” Opt. Express 12, 2487–2493 (2004).
    [CrossRef]
  12. K. Takano and K. Sato, “Full-color electro-holographic three-dimensional display system employing light emitting diodes in virtual image reconstruction,” Opt. Eng. 46, 095801 (2007).
    [CrossRef]
  13. Y. L. Shi, H. Wang, Y. Li, H. Z. Jin, and L. H. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48, 4219–4226 (2009).
    [CrossRef]
  14. M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19, 12008–12013 (2011).
    [CrossRef]
  15. Q. C. Jing, S. L. Jiao, and B. L. Yu, Colorimetry (Science Press, 1979).

2011 (3)

2010 (1)

P.-A. Blanche, A. Bablumian, and R. Voorakaranam, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

2009 (2)

T. Shimobaba, J. Miura, and T. Ito, “A computer aided design tool for developing an electroholographic display,” J. Opt. A: Pure Appl. Opt 11, 085408 (2009).
[CrossRef]

Y. L. Shi, H. Wang, Y. Li, H. Z. Jin, and L. H. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48, 4219–4226 (2009).
[CrossRef]

2007 (1)

K. Takano and K. Sato, “Full-color electro-holographic three-dimensional display system employing light emitting diodes in virtual image reconstruction,” Opt. Eng. 46, 095801 (2007).
[CrossRef]

2006 (1)

2004 (2)

2003 (1)

H. Wang, Y. Li, H. Z. Jin, C. F. Ying, X. Y. Su, and W. J. Chen, “Three-dimensional visualization of shape measurement data based on a computer generated hologram,” J. Opt. A: Pure Appl. Opt. 5, S195–S199 (2003).
[CrossRef]

2002 (1)

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

1992 (1)

Abookasis, D.

Bablumian, A.

P.-A. Blanche, A. Bablumian, and R. Voorakaranam, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Blanche, P.-A.

P.-A. Blanche, A. Bablumian, and R. Voorakaranam, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Chen, W. J.

H. Wang, Y. Li, H. Z. Jin, C. F. Ying, X. Y. Su, and W. J. Chen, “Three-dimensional visualization of shape measurement data based on a computer generated hologram,” J. Opt. A: Pure Appl. Opt. 5, S195–S199 (2003).
[CrossRef]

Cui, Z.

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Dallas, W. J.

W. J. Dallas and A. W. Lohmann, “Holography, techniques: computer-generated holograms,” in Encyclopedia of Modern Optics, B. D. Guenther, ed. (Elsevier, 2005), pp. 72–79.

Gao, F.

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Gao, F. H.

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Guo, Y. K.

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Huang, Q. Z.

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Ito, T.

M. Oikawa, T. Shimobaba, N. Masuda, and T. Ito, “Computer-generated hologram using an approximate Fresnel integral,” J. Opt. 13, 075405 (2011).
[CrossRef]

M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19, 12008–12013 (2011).
[CrossRef]

T. Shimobaba, J. Miura, and T. Ito, “A computer aided design tool for developing an electroholographic display,” J. Opt. A: Pure Appl. Opt 11, 085408 (2009).
[CrossRef]

Itoh, M.

Jiao, S. L.

Q. C. Jing, S. L. Jiao, and B. L. Yu, Colorimetry (Science Press, 1979).

Jin, H. Z.

Y. L. Shi, H. Wang, Y. Li, H. Z. Jin, and L. H. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48, 4219–4226 (2009).
[CrossRef]

H. Wang, Y. Li, H. Z. Jin, C. F. Ying, X. Y. Su, and W. J. Chen, “Three-dimensional visualization of shape measurement data based on a computer generated hologram,” J. Opt. A: Pure Appl. Opt. 5, S195–S199 (2003).
[CrossRef]

Jing, Q. C.

Q. C. Jing, S. L. Jiao, and B. L. Yu, Colorimetry (Science Press, 1979).

Kim, J. T.

Kim, T.

Kim, Y. S.

Leseberg, D.

Li, Y.

Y. L. Shi, H. Wang, Y. Li, H. Z. Jin, and L. H. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48, 4219–4226 (2009).
[CrossRef]

H. Wang, Y. Li, H. Z. Jin, C. F. Ying, X. Y. Su, and W. J. Chen, “Three-dimensional visualization of shape measurement data based on a computer generated hologram,” J. Opt. A: Pure Appl. Opt. 5, S195–S199 (2003).
[CrossRef]

Lohmann, A. W.

W. J. Dallas and A. W. Lohmann, “Holography, techniques: computer-generated holograms,” in Encyclopedia of Modern Optics, B. D. Guenther, ed. (Elsevier, 2005), pp. 72–79.

Ma, L. H.

Masuda, N.

Miura, J.

T. Shimobaba, J. Miura, and T. Ito, “A computer aided design tool for developing an electroholographic display,” J. Opt. A: Pure Appl. Opt 11, 085408 (2009).
[CrossRef]

Nakayama, H.

Oikawa, M.

Poon, T. C.

Rosen, J.

Sando, Y.

Sato, K.

K. Takano and K. Sato, “Full-color electro-holographic three-dimensional display system employing light emitting diodes in virtual image reconstruction,” Opt. Eng. 46, 095801 (2007).
[CrossRef]

Shi, Y. L.

Shimobaba, T.

M. Oikawa, T. Shimobaba, T. Yoda, H. Nakayama, A. Shiraki, N. Masuda, and T. Ito, “Time-division color electroholography using one-chip RGB LED and synchronizing controller,” Opt. Express 19, 12008–12013 (2011).
[CrossRef]

M. Oikawa, T. Shimobaba, N. Masuda, and T. Ito, “Computer-generated hologram using an approximate Fresnel integral,” J. Opt. 13, 075405 (2011).
[CrossRef]

T. Shimobaba, J. Miura, and T. Ito, “A computer aided design tool for developing an electroholographic display,” J. Opt. A: Pure Appl. Opt 11, 085408 (2009).
[CrossRef]

Shiraki, A.

Su, X. Y.

H. Wang, Y. Li, H. Z. Jin, C. F. Ying, X. Y. Su, and W. J. Chen, “Three-dimensional visualization of shape measurement data based on a computer generated hologram,” J. Opt. A: Pure Appl. Opt. 5, S195–S199 (2003).
[CrossRef]

Takano, K.

K. Takano and K. Sato, “Full-color electro-holographic three-dimensional display system employing light emitting diodes in virtual image reconstruction,” Opt. Eng. 46, 095801 (2007).
[CrossRef]

Voorakaranam, R.

P.-A. Blanche, A. Bablumian, and R. Voorakaranam, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Wang, H.

Y. L. Shi, H. Wang, Y. Li, H. Z. Jin, and L. H. Ma, “Practical method for color computer-generated rainbow holograms of real-existing objects,” Appl. Opt. 48, 4219–4226 (2009).
[CrossRef]

H. Wang, Y. Li, H. Z. Jin, C. F. Ying, X. Y. Su, and W. J. Chen, “Three-dimensional visualization of shape measurement data based on a computer generated hologram,” J. Opt. A: Pure Appl. Opt. 5, S195–S199 (2003).
[CrossRef]

Yatagai, T.

Ying, C. F.

H. Wang, Y. Li, H. Z. Jin, C. F. Ying, X. Y. Su, and W. J. Chen, “Three-dimensional visualization of shape measurement data based on a computer generated hologram,” J. Opt. A: Pure Appl. Opt. 5, S195–S199 (2003).
[CrossRef]

Yoda, T.

Yu, B. L.

Q. C. Jing, S. L. Jiao, and B. L. Yu, Colorimetry (Science Press, 1979).

Zeng, Y. S.

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Zhang, Y. X.

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Zhu, J. H.

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Appl. Opt. (4)

J. Opt. (1)

M. Oikawa, T. Shimobaba, N. Masuda, and T. Ito, “Computer-generated hologram using an approximate Fresnel integral,” J. Opt. 13, 075405 (2011).
[CrossRef]

J. Opt. A: Pure Appl. Opt (1)

T. Shimobaba, J. Miura, and T. Ito, “A computer aided design tool for developing an electroholographic display,” J. Opt. A: Pure Appl. Opt 11, 085408 (2009).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

H. Wang, Y. Li, H. Z. Jin, C. F. Ying, X. Y. Su, and W. J. Chen, “Three-dimensional visualization of shape measurement data based on a computer generated hologram,” J. Opt. A: Pure Appl. Opt. 5, S195–S199 (2003).
[CrossRef]

Microelectron. Eng. (1)

F. Gao, J. H. Zhu, Q. Z. Huang, Y. X. Zhang, Y. S. Zeng, F. H. Gao, Y. K. Guo, and Z. Cui, “Electron-beam lithography to improve quality of computer-generated hologram,” Microelectron. Eng. 61–62, 363–369 (2002).
[CrossRef]

Nature (1)

P.-A. Blanche, A. Bablumian, and R. Voorakaranam, “Holographic three-dimensional telepresence using large-area photorefractive polymer,” Nature 468, 80–83 (2010).
[CrossRef]

Opt. Eng. (1)

K. Takano and K. Sato, “Full-color electro-holographic three-dimensional display system employing light emitting diodes in virtual image reconstruction,” Opt. Eng. 46, 095801 (2007).
[CrossRef]

Opt. Express (3)

Other (2)

Q. C. Jing, S. L. Jiao, and B. L. Yu, Colorimetry (Science Press, 1979).

W. J. Dallas and A. W. Lohmann, “Holography, techniques: computer-generated holograms,” in Encyclopedia of Modern Optics, B. D. Guenther, ed. (Elsevier, 2005), pp. 72–79.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Three primary colors of PAL and CCGH colorimetric system.

Fig. 2.
Fig. 2.

Spectral distribution of CIE standard illuminant A.

Fig. 3.
Fig. 3.

Color object and its holographic image: (a) color target object, (b) reconstructed color image.

Tables (3)

Tables Icon

Table 1. Main Parameters of Color Transmission of CCGH

Tables Icon

Table 2. Related Color Matching Parameters of CCGH

Tables Icon

Table 3. Tristimulus Value and Amplitude of Object Light Field

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

1(R)=Xr[X]+Yr[Y]+Zr[Z],1(G)=Xg[X]+Yg[Y]+Zg[Y],1(B)=Xb[X]+Yb[Y]+Zb[Y].
R(R)=RXr[X]+RYr[Y]+RZr[Z],G(G)=GXg[X]+GYg[Y]+GZg[Z],B(B)=BXb[X]+BYb[Y]+BZb[Z].
X=RXr+GXg+BXb,Y=RYr+GYg+BYb,Z=RZr+GZg+BZb.
Xr/g/b=(Xr/g/b+Yr/g/b+Zr/g/b)xr/g/b=Cr/g/bxr/g/b,Yr/g/b=(Xr/g/b+Yr/g/b+Zr/g/b)yr/g/b=Cr/g/byr/g/b,Zr/g/b=(Xr/g/b+Yr/g/b+Zr/g/b)zr/g/b=Cr/g/bzr/g/b.
X=CrxrR+CgxgG+CbxbB,Y=CryrR+CgygG+CbybB,Z=CrzrR+CgzgG+CbzbB.
R=ygzbybzgCrΔX+xbzgxgzbCrΔY+xgybxbygCrΔZ,G=ybzryrzbCgΔX+xrzbxbzrCgΔY+xbyrxrybCgΔZ,B=yrzgygzrCbΔX+xgzrxrzgCbΔY+xrygxgyrCbΔZ.
Δ=|xrxgxbyrygybzrzgzb|.
X=CrexreRe+CgexgeGe+CbexbeBe=areRe+ageGe+abeBe,Y=CreyreRe+CgeygeGe+CbeybeBe=breRe+bgeGe+bbeBe,Z=CrezreRe+CgezgeGe+CbezbeBe=creRe+cgeGe+cbeBe.
Rh=yghzbhybhzghCrhΔhX+xbhzghxghzbhCrhΔhY+xghybhxbhyghCrhΔhZ=αxhX+αyhY+αzhZ,Gh=ybhzrhyrhzbhCghΔhX+xrhzbhxbhzrhCghΔhY+xbhyrhxrhybhCghΔhZ=βxhX+βyhY+βzhZ,Bh=yrhzghyghzrhCbhΔhX+xghzrhxrhzghCbhΔhY+xrhyghxghyrhCbhΔhZ=γxhX+γyhY+γzhZ.
Rh=arRe+agGe+abBe,Gh=brRe+bgGe+bbBe,Bh=crRe+cgGe+cbBe,
ar=αxhare+αyhbre+αzhcre,ag=αxhage+αyhbge+αzhcge,ab=αxhabe+αyhbbe+αzhcbe,br=βxhare+βyhbre+βzhcre,bg=βxhage+βyhbge+βzhcge,bb=βxhabe+βyhbbe+βzhcbe,cr=γxhare+γyhbre+γzhcre,cg=γxhage+γyhbge+γzhcge,cb=γxhabe+γyhbbe+γzhcbe.
AoCr=awrRh,AoCg=awgGh,AoCb=awbBh.
AoWrAoWgAoWb=awrawgawb.
AiCr=ηAoCrP(λr)=ηP(λr)awrRh,AiCg=ηAoCgP(λg)=ηP(λg)awgGh,AiCb=ηAoCbP(λb)=ηP(λb)awbBh,
AiWr=ηP(λr)awr,AiWg=ηP(λg)awg,AiWb=ηP(λb)awb,
Yr=V(λr)AiWr2,Yg=V(λg)AiWg2,Yb=V(λb)AiWb2.
Yr=V(λr)η2P(λr)awr2,Yg=V(λg)η2P(λg)awg2,Yb=V(λb)η2P(λb)awb2,
awrawgawb=YrP(λr)V(λr)YgP(λg)V(λg)YbP(λb)V(λb).
Xr=xrhyrhYr,Yr=Yr,Zr=zrhyrhYr,Xg=xghyghYg,Yg=Yg,Zg=zghyghYg,Xb=xbhybhYb,Yb=Yb,Zb=zbhybhYb.
Xw=xrhyrhYr+xghyghYg+xbhybhYb=a1Yr+a2Yg+a3Yb,Yw=Yr+Yg+Yb,Zw=zrhyrhYr+zghyghYg+zbhybhYb=c1Yr+c2Yg+c3Yb.
Yr=(c3c2)ΩXw+(c2a3a2c3)ΩYw+(a2a2)ΩZw,Yg=(c1c3)ΩXw+(a1c3c1a3)ΩYw+(a3a1)ΩZw,Yb=(c2c1)ΩXw+(c1a2a1c2)ΩYw+(a1a2)ΩZw,
a1=xrhyrha2=xghygha3=xbhybh;c1=zrhyrhc2=zghyghc3=zbhybh,Ω=(c2c1)(a3a1)(a2a1)(c3c1).
Rh=0.8587Re+0.1144Ge+0.0271Be,Gh=0.017Re+0.9516Ge+0.0313Be,Bh=0.0185Re+0.1129Ge+0.8688Be.
AoCr=0.9Rh,AoCg=1.35Gh,AoCb=2.18Bh.

Metrics