Abstract

We present a metamaterial-based random polarization control plate to produce incoherent laser irradiation by exploiting the ability of metamaterial in the local polarization manipulation of a beam upon transmission via tuning its local geometry. As a proof of principle, we exemplify this idea numerically in a simple optical system using a typical L-shaped plasmonic metamaterial with locally varying geometry, from which the desired polarization distribution can be obtained. The calculating results illustrate that this scheme can effectively suppress the speckle contrast and increase irradiation uniformity, which has potential to satisfy the increasing requirements for incoherent laser irradiation.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), Subsection 5.4.3.
  2. X. Deng, X. Liang, Z. Chen, W. Yu, and R. Ma, “Uniform illumination of large targets using a lens array,” Appl. Opt. 25, 377–381 (1986).
    [CrossRef]
  3. Laboratory for Laser Energetics, “Phase conversion using distributed polarization rotation,” in Vol. 45 of Laboratory for Laser Energetics Review Quarterly Report, NTIS document no. DOE/DP40200-149 (University of Rochester, 1990), p. 1–12.
  4. K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
    [CrossRef]
  5. J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
    [CrossRef]
  6. D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639–6647 (2004).
    [CrossRef]
  7. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [CrossRef]
  8. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
    [CrossRef]
  9. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
    [CrossRef]
  10. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
    [CrossRef]
  11. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93, 251903 (2008).
    [CrossRef]
  12. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [CrossRef]
  13. C. Wu, H. Li, X. Yu, F. Li, and H. Chen, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
    [CrossRef]
  14. Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
    [CrossRef]
  15. S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, “Random phase plates for beam smoothing on Nova laser,” Appl. Opt. 32, 2543–2554 (1993).
    [CrossRef]
  16. J. C. Dainty, ed., Laser Speckle and Related Phenomena, 2nd ed. (Springer, 1984).
  17. J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts, 2006).
  18. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials” Phys. Rev. A 82, 053811 (2010).
    [CrossRef]
  19. R. E. Raab and O. L. D. Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).
  20. J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
    [CrossRef]
  21. A. Tavlove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef]
  23. J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).
  24. J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011).
    [CrossRef]

2011

C. Wu, H. Li, X. Yu, F. Li, and H. Chen, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011).
[CrossRef]

2010

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

2009

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

2008

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

2007

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

2006

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

2004

D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, “Polarization smoothing in a convergent beam,” Appl. Opt. 43, 6639–6647 (2004).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

2000

J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
[CrossRef]

1993

1992

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

1986

1984

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

1983

Alexander, R. W.

Arinaga, S.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Chen, H.

C. Wu, H. Li, X. Yu, F. Li, and H. Chen, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Chen, Z.

Chin, J. Y.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

Chipouline, A.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

Cui, T. J.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Deng, X.

Dixit, S. N.

Fedotov, V. A.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Feng, J.

J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).

J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts, 2006).

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Henesian, M. A.

Hu, W.

J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011).
[CrossRef]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Jitsuno, T.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Kanabe, T.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Kato, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Kitagawa, Y.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Langdon, A. B.

Lange, O. L. D.

R. E. Raab and O. L. D. Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).

Lederer, F.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

Li, F.

C. Wu, H. Li, X. Yu, F. Li, and H. Chen, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Li, H.

C. Wu, H. Li, X. Yu, F. Li, and H. Chen, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Liang, X.

Lin, X.-W.

J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Liu, H.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Long, L. L.

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

Lu, Y.-Q.

J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011).
[CrossRef]

Ma, R.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), Subsection 5.4.3.

Menzel, C.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

Mima, K.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Miyanaga, N.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Morgan, A. J.

Munro, D. H.

Murray, J. R.

Nakai, S.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nakano, H.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Nakatsuka, M.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Ordal, M. A.

Paul, T.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Pertsch, T.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

Petschulat, J.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

Powell, H. T.

Raab, R. E.

R. E. Raab and O. L. D. Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Rockstuhl, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

Rogacheva, A. V.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Rothenberg, J. E.

J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
[CrossRef]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Tavlove, A.

A. Tavlove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Thomas, I. M.

Tsubakimoto, K.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Tünnermann, A.

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Ward, C. A.

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Wegner, P. J.

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), Subsection 5.4.3.

Woods, B. W.

Wu, C.

C. Wu, H. Li, X. Yu, F. Li, and H. Chen, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Xu, F.

J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011).
[CrossRef]

Yamanaka, C.

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

Yu, W.

Yu, X.

C. Wu, H. Li, X. Yu, F. Li, and H. Chen, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Zhang, X.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Zhao, Y.

J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011).
[CrossRef]

Zheludev, N. I.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Zhu, S. N.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93, 251903 (2008).
[CrossRef]

J. Appl. Phys.

J. E. Rothenberg, “Polarization beam smoothing for inertial confinement fusion,” J. Appl. Phys. 87, 3654–3662 (2000).
[CrossRef]

Opt. Commun.

K. Tsubakimoto, M. Nakatsuka, H. Nakano, T. Kanabe, T. Jitsuno, and S. Nakai, “Suppression of interference speckles produced by a random phase plate, using a polarization control plate,” Opt. Commun. 91, 9–12 (1992).
[CrossRef]

Phys. Rev. A

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials” Phys. Rev. A 82, 053811 (2010).
[CrossRef]

Phys. Rev. B

J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, “Simple and versatile analytical approach for planar metamaterials,” Phys. Rev. B 82, 075102 (2010).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures,” Phys. Rev. B 76, 073101 (2007).
[CrossRef]

Phys. Rev. Lett.

C. Wu, H. Li, X. Yu, F. Li, and H. Chen, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[CrossRef]

Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[CrossRef]

Science

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[CrossRef]

Sensors

J. Feng, Y. Zhao, X.-W. Lin, W. Hu, F. Xu, and Y.-Q. Lu, “A transflective nano-wire grid polarizer based fiber-optic sensor,” Sensors 11, 2488–2495 (2011).
[CrossRef]

Other

J. W. Goodman, Introduction to Fourier Optics, 3rd ed.(Roberts, 2005).

A. Tavlove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 1995).

R. E. Raab and O. L. D. Lange, Multipole Theory in Electromagnetism (Clarendon, 2005).

J. C. Dainty, ed., Laser Speckle and Related Phenomena, 2nd ed. (Springer, 1984).

J. W. Goodman, Speckle Phenomena in Optics (Ben Roberts, 2006).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995), Subsection 5.4.3.

Laboratory for Laser Energetics, “Phase conversion using distributed polarization rotation,” in Vol. 45 of Laboratory for Laser Energetics Review Quarterly Report, NTIS document no. DOE/DP40200-149 (University of Rochester, 1990), p. 1–12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic picture of the MRPCP. Each square represents an element. The arrows indicate e rays of the anisotropic metamaterial elements.

Fig. 2.
Fig. 2.

(a) Schematic of the unit cell with the geometrical parameters: b=250nm, c=60nm, and the thickness of the substrate d=100nm. The lattice constant along both x and y directions is l=500nm. The thickness of the gold L is 20 nm and not shown in this figure. (b) Rotating of L from the xy coordinate system to uv coordinate system.

Fig. 3.
Fig. 3.

Magnitude of the transmission coefficient versus frequency f.

Fig. 4.
Fig. 4.

Schematic picture of the simplified optical system.

Fig. 5.
Fig. 5.

Normalized one-dimensional intensity distribution (cross section at y=0) of the speckle pattern for (a) only using the RPP and (b) the MRPCP+RPP. The green solid lines represent the intensity envelope.

Fig. 6.
Fig. 6.

Normalized probability density [I¯total×P(I/I¯total)] of intensity distribution for only using the RPP and the MRPCP+RPP (theoretical and statistical).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I(r,t)=i|Ei|2+ij2[a⃗i·a⃗j]EiEjcos[Φi(r,t)Φj(r,t)],
P1(I)=1I¯xI¯y[exp(II¯x)exp(II¯y)],
P1(I)=1I¯total(A1A2)×[exp(II¯totalA1)exp(II¯totalA2)],
C=A12+A22/(A1+A2).
(EtxEty)=(TxxTxyTyxTyy)(EixEiy).
(EtxEty)=R(θ)(TuuTuvTvuTvv)R(θ)(EixEiy),
R(θ)=(cosθsinθsinθcosθ).
(EtxEty)=(Eix(TuuTuvsin2θ)EixTuvcos2θ).
Ejmn(x,y)=exp(ikf0)exp[ik2f0(x2+y2)]iλf0×SαβEjmn(x,y)exp(iϕRPP)×exp[i2πλf0(xx+yy)]dxdy,
Ej(x,y)=mnEjmn(x,y),
Itotal(x,y)=Ix(x,y)+Iy(x,y)=|Ex(x,y)|2+|Ey(x,y)|2.

Metrics