Abstract

Although subwavelength dielectric gratings can be employed to achieve a high sensitivity of the surface plasmon resonance (SPR) biosensor, the plasmonic interpretation verifying the resulting sensitivity improvement remains unclear. The aim of this study is to elucidate the effects of the grating’s geometric parameters on the amplification of SPR responses and to understand the physical mechanisms associated with the enhancement. Our numerical results show that the proposed SPR substrate with a dielectric grating can provide a better sensitivity due to the combined effects of surface reaction area and field distribution at the binding region. An influence of adhesion layer on the sensor performance is also discussed. The obtained results will be promising in high-sensitivity plasmonic biosensing applications.

©2012 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings

Seong Min Jang, Donghyun Kim, Seung Ho Choi, Kyung Min Byun, and Sung June Kim
Appl. Opt. 50(18) 2846-2854 (2011)

Plasmonic metal–dielectric–metal stack structure with subwavelength metallic gratings for improving sensor sensitivity and signal quality

Sherif H. El-Gohary, Jong Min Choi, Nak-Hyeon Kim, and Kyung Min Byun
Appl. Opt. 53(10) 2152-2157 (2014)

Effect of target localization on the sensitivity of a localized surface plasmon resonance biosensor based on subwavelength metallic nanostructures

Kyung Min Byun, Seong Min Jang, Sung June Kim, and Donghyun Kim
J. Opt. Soc. Am. A 26(4) 1027-1034 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Metrics