Abstract

Although subwavelength dielectric gratings can be employed to achieve a high sensitivity of the surface plasmon resonance (SPR) biosensor, the plasmonic interpretation verifying the resulting sensitivity improvement remains unclear. The aim of this study is to elucidate the effects of the grating’s geometric parameters on the amplification of SPR responses and to understand the physical mechanisms associated with the enhancement. Our numerical results show that the proposed SPR substrate with a dielectric grating can provide a better sensitivity due to the combined effects of surface reaction area and field distribution at the binding region. An influence of adhesion layer on the sensor performance is also discussed. The obtained results will be promising in high-sensitivity plasmonic biosensing applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
    [CrossRef]
  2. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
    [CrossRef]
  3. K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
    [CrossRef]
  4. S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
    [CrossRef]
  5. N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011).
    [CrossRef]
  6. K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
    [CrossRef]
  7. W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
    [CrossRef]
  8. S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
    [CrossRef]
  9. S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096–1099 (2006).
    [CrossRef]
  10. S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
    [CrossRef]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  12. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
    [CrossRef]
  13. L. Li and C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993).
    [CrossRef]
  14. N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22, 1282–1288 (2007).
    [CrossRef]
  15. A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A: Phys. 159, 24–32 (2010).
    [CrossRef]
  16. W. K. Jung and K. M. Byun, “Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors,” Biomed. Eng. Lett. 1, 153–162 (2011).
    [CrossRef]
  17. A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A: Pure Appl. Opt. 11, 114001 (2009).
    [CrossRef]
  18. S. H. Choi, S. J. Kim, and K. M. Byun, “Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings,” Appl. Opt. 48, 2924–2931 (2009).
    [CrossRef]
  19. S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors,” Appl. Spectrosc. 59, 661–667 (2005).
    [CrossRef]

2011 (2)

N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011).
[CrossRef]

W. K. Jung and K. M. Byun, “Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors,” Biomed. Eng. Lett. 1, 153–162 (2011).
[CrossRef]

2010 (3)

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A: Phys. 159, 24–32 (2010).
[CrossRef]

2009 (3)

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A: Pure Appl. Opt. 11, 114001 (2009).
[CrossRef]

S. H. Choi, S. J. Kim, and K. M. Byun, “Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings,” Appl. Opt. 48, 2924–2931 (2009).
[CrossRef]

2008 (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[CrossRef]

2007 (3)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22, 1282–1288 (2007).
[CrossRef]

2006 (1)

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096–1099 (2006).
[CrossRef]

2005 (1)

2004 (2)

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

1993 (1)

1986 (1)

Abdulhalim, I.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A: Phys. 159, 24–32 (2010).
[CrossRef]

Boltasseva, A.

A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A: Pure Appl. Opt. 11, 114001 (2009).
[CrossRef]

Byun, K. M.

W. K. Jung and K. M. Byun, “Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors,” Biomed. Eng. Lett. 1, 153–162 (2011).
[CrossRef]

N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011).
[CrossRef]

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

S. H. Choi, S. J. Kim, and K. M. Byun, “Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings,” Appl. Opt. 48, 2924–2931 (2009).
[CrossRef]

Chang, G. L.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Chen, S.-J.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Chen, W. Y.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Choi, S. H.

Ekgasit, S.

Elhadj, S.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Gaylord, T. K.

Haggans, C. W.

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[CrossRef]

Hong, S.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096–1099 (2006).
[CrossRef]

Horvath, R.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22, 1282–1288 (2007).
[CrossRef]

Hsu, J. H.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Hu, W. P.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Huang, K.-T.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Jang, S. M.

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

Jung, W. K.

N.-H. Kim, W. K. Jung, and K. M. Byun, “Correlation analysis between plasmon field distribution and sensitivity enhancement in reflection- and transmission-type localized surface plasmon resonance biosensors,” Appl. Opt. 50, 4982–4988 (2011).
[CrossRef]

W. K. Jung and K. M. Byun, “Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors,” Biomed. Eng. Lett. 1, 153–162 (2011).
[CrossRef]

Kang, T.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096–1099 (2006).
[CrossRef]

Kim, D.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Kim, D. J.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Kim, K.

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Kim, N.-H.

Kim, S. A.

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

Kim, S. G.

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

Kim, S. J.

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

S. H. Choi, S. J. Kim, and K. M. Byun, “Design study for transmission improvement of resonant surface plasmons using dielectric diffraction gratings,” Appl. Opt. 48, 2924–2931 (2009).
[CrossRef]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Knoll, W.

Lai, K.-A.

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Larsen, N. B.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22, 1282–1288 (2007).
[CrossRef]

Li, L.

Ma, K.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

Moharam, M. G.

Moon, J.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096–1099 (2006).
[CrossRef]

Moon, S.

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

Oh, S.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096–1099 (2006).
[CrossRef]

Oh, Y.

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pedersen, H. C.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22, 1282–1288 (2007).
[CrossRef]

Pile, D. F. P.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

Saraf, R. F.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Shalabney, A.

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A: Phys. 159, 24–32 (2010).
[CrossRef]

Shuler, M. L.

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

Singh, G.

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Skivesen, N.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22, 1282–1288 (2007).
[CrossRef]

Sun, C.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Thammacharoen, C.

Thinggaard, S.

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22, 1282–1288 (2007).
[CrossRef]

Wang, S.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

Yi, J.

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096–1099 (2006).
[CrossRef]

Yu, F.

Zhang, X.

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Biomed. Eng. Lett. (1)

W. K. Jung and K. M. Byun, “Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors,” Biomed. Eng. Lett. 1, 153–162 (2011).
[CrossRef]

Biosens. Bioelectron. (3)

N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, and H. C. Pedersen, “Deep-probe metal-clad waveguide biosensors,” Biosens. Bioelectron. 22, 1282–1288 (2007).
[CrossRef]

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

W. P. Hu, S.-J. Chen, K.-T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang, and K.-A. Lai, “A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film,” Biosens. Bioelectron. 19, 1465–1471 (2004).
[CrossRef]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108, 462–493 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Ma, D. J. Kim, K. Kim, S. Moon, and D. Kim, “Target-localized nanograting-based surface plasmon resonance detection toward label-free molecular biosensing,” IEEE J. Sel. Top. Quantum Electron. 16, 1004–1014 (2010).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J. Opt. A: Pure Appl. Opt. 11, 114001 (2009).
[CrossRef]

J. Opt. Soc. Am. A (2)

Langmuir (1)

S. Elhadj, G. Singh, and R. F. Saraf, “Optical properties of an immobilized DNA monolayer from 255 to 700 nm,” Langmuir 20, 5539–5543 (2004).
[CrossRef]

Nano Lett. (1)

S. Wang, D. F. P. Pile, C. Sun, and X. Zhang, “Nanopin plasmonic resonator array and its optical properties,” Nano Lett. 7, 1076–1080 (2007).
[CrossRef]

Nanotechnology (2)

K. Kim, D. J. Kim, S. Moon, D. Kim, and K. M. Byun, “Localized surface plasmon resonance detection of layered biointeractions on metallic subwavelength nanogratings,” Nanotechnology 20, 315501 (2009).
[CrossRef]

S. A. Kim, K. M. Byun, K. Kim, S. M. Jang, K. Ma, Y. Oh, D. Kim, S. G. Kim, M. L. Shuler, and S. J. Kim, “Surface-enhanced localized surface plasmon resonance biosensing of avian influenza DNA hybridization using subwavelength metallic nanoarrays,” Nanotechnology 21, 355503 (2010).
[CrossRef]

Sens. Actuators A: Phys. (1)

A. Shalabney and I. Abdulhalim, “Electromagnetic fields distribution in multilayer thin film structures and the origin of sensitivity enhancement in surface plasmon resonance sensors,” Sens. Actuators A: Phys. 159, 24–32 (2010).
[CrossRef]

Sens. Actuators B (1)

S. Oh, J. Moon, T. Kang, S. Hong, and J. Yi, “Enhancement of surface plasmon resonance signals using organic functionalized mesoporous silica on a gold film,” Sens. Actuators B 114, 1096–1099 (2006).
[CrossRef]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Perspective view of the proposed SPR sensing configuration and its cross-sectional image. TM-polarized light with λ=633nm is incident through a gold/chromium/SF10 substrate with an angle of θ. Dielectric gratings are regularly patterned on the 45 nm thick planar gold film in PBS solution. The grating structure of a rectangular profile has a period of Λ and a thickness of dg. A 2 nm thick binding layer is assumed to cover the whole sensor surface uniformly.

Fig. 2.
Fig. 2.

Resonance angles (rectangles) and sensitivity characteristic (circle) for an SPR structure with dielectric gratings of Λ=100nm and a fill factor f=0.5 when the refractive index of the binding layer increases from 1.40 to 1.50. The grating thickness dg varies from 0 to 200 nm with a step of 10 nm.

Fig. 3.
Fig. 3.

Comparison between SEF (rectangles) and SAGF (circles) when the grating thickness increases from 0 to 200 nm. The geometric parameters of a dielectric grating are the same as those in Fig. 2.

Fig. 4.
Fig. 4.

Vertical field profiles of EX along the z axis when the SPR structures possess dielectric gratings of dg=0, 100, and 200 nm.

Fig. 5.
Fig. 5.

Correlation analysis between SEF (rectangle) and SAGF (circle) for a thin grating of dg=50nm when Λ changes from 50 to 1000 nm.

Fig. 6.
Fig. 6.

SEF characteristics with respect to the grating period Λ when grating thickness dg increases.

Fig. 7.
Fig. 7.

(a) Resonance angles as a function of the grating thickness at Λ=200nm before and after target binding and (b) the condition satisfying K=2kSPR. Along the curve of K=2kSPR, the radiative damping effect is caused by the interference between the incidence and the diffracted light.

Fig. 8.
Fig. 8.

Sensor performance of (a) resonance angle shift and (b) minimum reflectance as the thickness of chromium film increases. The dielectric gratings have a period of Λ=100nm and f=0.5.

Fig. 9.
Fig. 9.

Reflectance curves of SPR biosensors with (a) metallic and (b) dielectric gratings when Λ=50nm and f=0.5. The solid curves indicate the results of a thin-film-based SPR system without grating structures.

Fig. 10.
Fig. 10.

FOM values of the dielectric-grating-based SPR system. The dotted line indicates the FOM value of the SPR sensor with a metallic grating of Λ=50nm and dg=5nm.

Tables (1)

Tables Icon

Table 1. Enhancement Factors of SEF, SAGF, and OIEF When a Grating Period is 100 nm and its Thicknesses are 100 and 200 nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

OI=1Λx=x0x=x0+Λz=z0z=z0+λΔnBL·|EX(x,z)|2dzdx,
K=2πΛ=2kSPR=2k0εpsinθSPR,
FOM=m[deg/RIU]FWHM[deg]·(1MRR),

Metrics