Abstract

Fabrication and characterization of a UV inscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74μm(h)×125μm(w)×1388.72μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Paul and G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
    [CrossRef]
  2. M. W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12, 6446–6455 (2004).
    [CrossRef]
  3. R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.
  4. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
    [CrossRef]
  5. E. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structure,” Appl. Phys. Lett. 49, 13 (1986).
    [CrossRef]
  6. T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
    [CrossRef]
  7. O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Dohler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109 (2006).
    [CrossRef]
  8. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef]
  9. K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive index responsivity and low thermal cross sensitivity utilizing fiber Bragg gratings of >80° -tilted structures,” Opt. Lett. 31, 1193–1195 (2006).
    [CrossRef]
  10. E. M. Davies, P. Saffari, C. Mou, K. Zou, L. Zhang, and I. Bennion, “Refractive index sensitivity enhancement of 81° tilted Bragg gratings by cladding etching,” Proc. SPIE 7503, 75036X (2009).
    [CrossRef]
  11. A. C. F. Chan, C. Chen, A. Jafari, A. Laronche, D. J. Thomson, and J. Albert, “Optical fiber refractometerusing narrowband cladding-mode resonance shifts,” Appl. Opt. 46, 1142–1149 (2007).
    [CrossRef]
  12. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
    [CrossRef]
  13. K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15, 15848–15853 (2007).
    [CrossRef]
  14. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15, 8731–8736 (2007).
    [CrossRef]
  15. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett. 16, 1352–1354 (2004).
    [CrossRef]

2009 (1)

E. M. Davies, P. Saffari, C. Mou, K. Zou, L. Zhang, and I. Bennion, “Refractive index sensitivity enhancement of 81° tilted Bragg gratings by cladding etching,” Proc. SPIE 7503, 75036X (2009).
[CrossRef]

2007 (3)

2006 (2)

2004 (3)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

M. W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12, 6446–6455 (2004).
[CrossRef]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett. 16, 1352–1354 (2004).
[CrossRef]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

1996 (1)

1992 (1)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

1987 (1)

P. H. Paul and G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

1986 (1)

E. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structure,” Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Albert, J.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Baba, T.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

Bassler, M.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Dohler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109 (2006).
[CrossRef]

Bennion, I.

E. M. Davies, P. Saffari, C. Mou, K. Zou, L. Zhang, and I. Bennion, “Refractive index sensitivity enhancement of 81° tilted Bragg gratings by cladding etching,” Proc. SPIE 7503, 75036X (2009).
[CrossRef]

K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15, 15848–15853 (2007).
[CrossRef]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive index responsivity and low thermal cross sensitivity utilizing fiber Bragg gratings of >80° -tilted structures,” Opt. Lett. 31, 1193–1195 (2006).
[CrossRef]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett. 16, 1352–1354 (2004).
[CrossRef]

Berg, J.

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Bhatia, V.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Chan, A. C. F.

Chen, C.

Chen, X.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Dallas, T.

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Dasgupta, P.

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Datta, A.

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Davies, E. M.

E. M. Davies, P. Saffari, C. Mou, K. Zou, L. Zhang, and I. Bennion, “Refractive index sensitivity enhancement of 81° tilted Bragg gratings by cladding etching,” Proc. SPIE 7503, 75036X (2009).
[CrossRef]

Dhar, A.

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Dohler, G. H.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Dohler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109 (2006).
[CrossRef]

Duguay, E. M. A.

E. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structure,” Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Gangopadhyay, S.

M. W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12, 6446–6455 (2004).
[CrossRef]

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Grivas, C.

Holtz, M.

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

Jafari, A.

Johnson, N. M.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Dohler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109 (2006).
[CrossRef]

Kiesel, P.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Dohler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109 (2006).
[CrossRef]

Kim, H. C.

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Koch, T. L.

E. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structure,” Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Kokubun, Y.

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

E. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structure,” Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Kychakoff, G.

P. H. Paul and G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

Lai, Y.

Laronche, A.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Manor, R.

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Miller, R. D.

Mou, C.

E. M. Davies, P. Saffari, C. Mou, K. Zou, L. Zhang, and I. Bennion, “Refractive index sensitivity enhancement of 81° tilted Bragg gratings by cladding etching,” Proc. SPIE 7503, 75036X (2009).
[CrossRef]

Paul, P. H.

P. H. Paul and G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

Petrovich, M. N.

Pfeiffer, L.

E. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structure,” Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

Richardson, D. J.

Risk, M. W. P.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Russell, P. S.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Saffari, P.

E. M. Davies, P. Saffari, C. Mou, K. Zou, L. Zhang, and I. Bennion, “Refractive index sensitivity enhancement of 81° tilted Bragg gratings by cladding etching,” Proc. SPIE 7503, 75036X (2009).
[CrossRef]

Schmidt, O.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Dohler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109 (2006).
[CrossRef]

Sugden, K.

Temkin, H.

M. W. P. Risk, H. C. Kim, R. D. Miller, H. Temkin, and S. Gangopadhyay, “Optical waveguides with an aqueous core and a low-index nanoporous cladding,” Opt. Express 12, 6446–6455 (2004).
[CrossRef]

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Thomson, D. J.

van Brakel, A.

Veeraraghavan, V.

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Vengsarkar, A. M.

Vijayaraghavan, R.

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Zhang, L.

E. M. Davies, P. Saffari, C. Mou, K. Zou, L. Zhang, and I. Bennion, “Refractive index sensitivity enhancement of 81° tilted Bragg gratings by cladding etching,” Proc. SPIE 7503, 75036X (2009).
[CrossRef]

K. Zhou, Y. Lai, X. Chen, K. Sugden, L. Zhang, and I. Bennion, “A refractometer based on a micro-slot in a fiber Bragg grating formed by chemically assisted femtosecond laser processing,” Opt. Express 15, 15848–15853 (2007).
[CrossRef]

K. Zhou, L. Zhang, X. Chen, and I. Bennion, “Optic sensors of high refractive index responsivity and low thermal cross sensitivity utilizing fiber Bragg gratings of >80° -tilted structures,” Opt. Lett. 31, 1193–1195 (2006).
[CrossRef]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett. 16, 1352–1354 (2004).
[CrossRef]

Zhou, K.

Zou, K.

E. M. Davies, P. Saffari, C. Mou, K. Zou, L. Zhang, and I. Bennion, “Refractive index sensitivity enhancement of 81° tilted Bragg gratings by cladding etching,” Proc. SPIE 7503, 75036X (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

P. H. Paul and G. Kychakoff, “Fiber-optic evanescent field absorption sensor,” Appl. Phys. Lett. 51, 12–14 (1987).
[CrossRef]

E. M. A. Duguay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2─Si multilayer structure,” Appl. Phys. Lett. 49, 13 (1986).
[CrossRef]

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Dohler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides-numerical results and analytical expressions,” IEEE J. Quantum Electron. 28, 1689–1700 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photon. Technol. Lett. 16, 1149–1151 (2004).
[CrossRef]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching,” IEEE Photon. Technol. Lett. 16, 1352–1354 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Proc. SPIE (1)

E. M. Davies, P. Saffari, C. Mou, K. Zou, L. Zhang, and I. Bennion, “Refractive index sensitivity enhancement of 81° tilted Bragg gratings by cladding etching,” Proc. SPIE 7503, 75036X (2009).
[CrossRef]

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999).
[CrossRef]

Other (1)

R. Manor, A. Datta, A. Dhar, M. Holtz, J. Berg, S. Gangopadhyay, P. Dasgupta, H. Temkin, V. Veeraraghavan, R. Vijayaraghavan, and T. Dallas, “Microfabricated liquid core waveguides for microanalysis systems,” in Proceedings of IEEE Sensors 2002, First IEEE International Conference on Sensors (IEEE, 2002), pp. 660–664.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Geometry of the proposed micro-slot along the FBG and across the fiber; (b) micro-image under a ×5 microscopic lens showing a 1388.72 µm long micro-slot along the FBG. Insets: The microscope images of the same device observed by ×40 oil-immersion microscopic lens.

Fig. 2.
Fig. 2.

(a) Transmission spectrum of the UV-inscribed FBG before the induction of a micro-slot into its structure; (b) transmission loss profile of the micro-slot FBG when it was surrounded by air, showing no Bragg peak and only Fabry–Pérot resonances.

Fig. 3.
Fig. 3.

Schematic diagrams of the light distribution in the micro-slot FBG: (a) nfluid<ncladding<ncore; (b) nfluid>ncore.

Fig. 4.
Fig. 4.

The transmission spectra when the micro-slot FBG was immersed in index gels with RI values of (a) 1.36 (remaining single mode); (b) 1.46 (showing two modes); and (c) 1.478 (exhibiting three modes).

Fig. 5.
Fig. 5.

Schematic diagram of experimental setup for RI measurement of the proposed micro-slot FBG. The dotted box shows the zoomed schematic diagram of the fiber core in the micro-slot FBG region.

Fig. 6.
Fig. 6.

RI characteristics of the proposed micro-slot FBG. The dashed vertical line indicates the boundary between the insensitive (more glass core guided) and sensitive (more liquid core guided) range.

Fig. 7.
Fig. 7.

Schematic diagram of experimental setup for temperature measurement of the proposed device.

Fig. 8.
Fig. 8.

(a) Thermal response of the micro-slot FBG when immersed in index gel of 1.448. (Note, increasing temperature of the gel will reduce its RI value by a rate of dn/dT=3.79×104/°C and as indicated in the figure at 35 °C and 60 °C, the RI value of gel decreases from 1.448 to 1.444 and 1.435, respectively.) Inset exhibits the linear thermal response of the device from 35 °C to 60 °C (b) Thermal response of the micro-slot FBG when immersed in index gel of 1.456. (Note, increasing temperature of the gel will reduce its RI value by a rate of dn/dT=3.74×104/°C and at 45 °C and 60 °C, the RI value of gel decreases from 1.456 to 1.448 and 1.443, respectively.)

Tables (1)

Tables Icon

Table 1. RI Sensitivity of the Proposed Device in Different IR Intervals from 1.448 to 1.496

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

neff(T)=C1nglass(T)+C2ngel(T),
neff=(C1+ΔC1)(nglass+Δnglass)+(C2ΔC2)(ngelΔngel).
Δneff=ΔC1(nglass+Δnglass)ΔC2(ngel+Δngel).

Metrics