Abstract

We propose a novel method to correct the chromatic dispersion in a planar waveguide with volume holograms fabricated by the three-step exposure technique. The 532 nm green laser is used to illuminate the holographic plate in three groups of different angles for achieving the desired holograms. When it is used in the planar waveguide, the chromatic dispersion of the original display can be corrected and an image with the real color can be obtained. The experiments are performed, and the results are in good agreement with the theory. It is believed that this technique is a good way to correct the chromatic problems in the display systems in the future.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cameron, “The application of holographic optical waveguide technology to Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
    [CrossRef]
  2. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Planar configuration for image projection,” Appl. Opt. 45, 4005–4011 (2006).
    [CrossRef]
  3. Y. Amitai, I. Shariv, M. Kroch, A. A. Friesem, and S. Reinhorn, “White-light holographic display based on planar optics,” Opt. Lett. 18, 1265–1267 (1993).
    [CrossRef]
  4. Y. Amitai, S. Reinhorn, and A. A. Friesem, “Visor-display design based on planar holographic optics,” Appl. Opt. 34, 1352–1356 (1995).
    [CrossRef]
  5. R. Shechter, N. Bokor, Y. Amitai, and A. A. Friesem, “Compact red-green-blue beam illuminator and expander,” Appl. Opt. 41, 1231–1235 (2002).
    [CrossRef]
  6. Y. Amitai, A. A. Friesem, and V. Weiss, “Holographic elements with high efficiency and low aberrations for helmet displays,” Appl. Opt. 28, 3405–3416 (1989).
    [CrossRef]
  7. L. Eisen, A. A. Friesem, M. Meyklyar, and M. Golub, “Color correction in planar optics configurations,” Opt. Lett. 31, 1522–1524 (2006).
    [CrossRef]
  8. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
    [CrossRef]
  9. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  10. CIE-1931, http://en.wikipedia.org/wiki/CIE_1931_color_space .

2009 (1)

A. Cameron, “The application of holographic optical waveguide technology to Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
[CrossRef]

2008 (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

2006 (2)

2002 (1)

R. Shechter, N. Bokor, Y. Amitai, and A. A. Friesem, “Compact red-green-blue beam illuminator and expander,” Appl. Opt. 41, 1231–1235 (2002).
[CrossRef]

1995 (1)

1993 (1)

1989 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Amitai, Y.

Bokor, N.

R. Shechter, N. Bokor, Y. Amitai, and A. A. Friesem, “Compact red-green-blue beam illuminator and expander,” Appl. Opt. 41, 1231–1235 (2002).
[CrossRef]

Cameron, A.

A. Cameron, “The application of holographic optical waveguide technology to Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
[CrossRef]

Eisen, L.

Friesem, A. A.

Golub, M.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Kroch, M.

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Meyklyar, M.

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Ogawa, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Reinhorn, S.

Shariv, I.

Shechter, R.

R. Shechter, N. Bokor, Y. Amitai, and A. A. Friesem, “Compact red-green-blue beam illuminator and expander,” Appl. Opt. 41, 1231–1235 (2002).
[CrossRef]

Weiss, V.

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Appl. Opt. (4)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Opt. Lett. (2)

Proc. SPIE (1)

A. Cameron, “The application of holographic optical waveguide technology to Q-Sight family of helmet-mounted displays,” Proc. SPIE 7326, 73260H (2009).
[CrossRef]

SID Int. Symp. Dig. Tech. Pap. (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Int. Symp. Dig. Tech. Pap. 39, 89–92 (2008).
[CrossRef]

Other (1)

CIE-1931, http://en.wikipedia.org/wiki/CIE_1931_color_space .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Sketch of the optical system for chromatic dispersion correction. (b) Illumination of the designed Bragg angle.

Fig. 2.
Fig. 2.

Angles of the incident plane waves for the three-step exposure. The first group for the red color reproduction (α1,β1), the second group for the green color reproduction (α2,β2), and the third one for the blue color reproduction (α3,β3).

Fig. 3.
Fig. 3.

(a) Schematic diagram of the angles of the recording beams and the angle of the grating vector in the medium. (b) Schematic diagram of the incident angle of the readout beam in the medium. (c) FOV as a function of the wavelength for different spectra. (d) Schematic view of the light wave transmitted in the glass substrate; θ1 and θ2 restrict the FOV.

Fig. 4.
Fig. 4.

Experimental results of the image from a flashlight. (a) Optical setup to capture the image. (b) Original image of the flashlight. (c) Monochromatic image, output from the image system fabricated by the only one-step exposure with the recording angles as α2=0°, β2=22°. (d) White light image, output from the image system fabricated by the three-step exposure.

Fig. 5.
Fig. 5.

Experimental results of a red apple with green leaf. (a) Optical setup to capture the image; (b) Original image of the apple. (c) Monochromatic image, output from the image system fabricated by the only one-step exposure (α2=0°, β2=22°). (d) Chromatic image, output from the image system fabricated by the three-step exposure.

Fig. 6.
Fig. 6.

Experimental results of a more complicated colorful example. (a) Original image of a toy tiger’s face. (b) Monochromatic image, output from the image system fabricated by the only one step exposure (α2=0°, β2=22°). (c) Chromatic image, output from the image system fabricated by the three-step exposure.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

2Λsinθrec2=λrec,
2Λsinθb=λ,
θrec=2arcsin(λrecλsinθb).
θθc=arcsin1n,
cos(ϕθ10)=K/2ζ,
cos(ϕθ10)λrecn2=cos(ϕθ11)λreadn1,
θinc=arcsin(nsin(ϕarccos(λreadn1cos(ϕθ10)λrecn2)π2)),
X=kλP(λ)x¯(λ)Δλ,
Y=kλP(λ)y¯(λ)Δλ,
Z=kλP(λ)z¯(λ)Δλ,

Metrics