Abstract

Monocentric multi-scale (MMS) lenses are a new approach to high-resolution wide-angle imaging, where a monocentric objective lens is shared by an array of identical rotationally symmetric secondary imagers that each acquire one overlapping segment of a mosaic. This allows gigapixel images to be computationally integrated from conventional image sensors and relatively simple optics. Here we describe the MMS design space, introducing constraints on image continuity and uniformity, and show how paraxial system analysis can provide both volume scaling and a systematic design methodology for MMS imagers. We provide the detailed design of a 120° field of viewimager (currently under construction) resolving 2 gigapixels at 41.5 μrad instantaneous field of view, and demonstrate reasonable agreement with the first-order scaling calculation.

© 2012 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription