Abstract

A novel handheld probe based on a microelectromechanical systems (MEMS) scanning mirror for three-dimensional (3D) fluorescence molecular tomography (FMT) is described. The miniaturized probe consists of a MEMS mirror for delivering an excitation light beam to multiple preselected points at the tissue surface and an optical fiber array for collecting the fluorescent emission light from the tissue. Several phantom experiments based on indocyanine green, an FDA approved near-infrared (NIR) fluorescent dye, were conducted to assess the imaging ability of this device. Tumor-bearing mice with systematically injected tumor-targeted NIR fluorescent probes were scanned to further demonstrate the ability of this MEMS-based FMT for imaging small animals.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).
    [CrossRef]
  2. X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007).
    [CrossRef]
  3. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
    [CrossRef]
  4. Y. Tan, L. Yang, and H. Jiang, “DOT guided fluorescence molecular tomography of tumor cell quantification in mice,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA69.
  5. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
    [CrossRef]
  6. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
    [CrossRef]
  7. M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
    [CrossRef]
  8. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
    [CrossRef]
  9. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
    [CrossRef]
  10. Q. Zhao, H. Jiang, Z. Cao, L. Yang, H. Mao, and M. Lipowska, “A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins,” Med. Phys. 38, 5873–5878 (2011).
    [CrossRef]
  11. L. Xi, J. Sun, Y. Zhu, L. Wu, H. Xie, and H. Jiang, “Photoacoustic imaging based on MEMS mirror scanning,” Biomed. Opt. Express 1, 1278–1283 (2010).
    [CrossRef]
  12. J. Sun, S. Guo, L. Wu, L. Liu, S.-W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010).
    [CrossRef]
  13. W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
    [CrossRef]
  14. L. Xi, S. R. Grobmyer, L. Wu, R. Chen, G. Zhou, L. G. Gutwein, J. Sun, W. Liao, Q. Zhou, H. Xie, and H. Jiang, “Evaluation of breast tumor margins in vivo with intraoperative photoacoustic imaging,” Opt. Express 20, 8726–8731 (2012).
    [CrossRef]
  15. L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
    [CrossRef]
  16. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt. 37, 5337–5342 (1998).
    [CrossRef]
  17. Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47, 2011–2016 (2008).
    [CrossRef]
  18. E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
    [CrossRef]

2012 (1)

2011 (1)

Q. Zhao, H. Jiang, Z. Cao, L. Yang, H. Mao, and M. Lipowska, “A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins,” Med. Phys. 38, 5873–5878 (2011).
[CrossRef]

2010 (4)

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).
[CrossRef]

J. Sun, S. Guo, L. Wu, L. Liu, S.-W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18, 12065–12075 (2010).
[CrossRef]

L. Xi, J. Sun, Y. Zhu, L. Wu, H. Xie, and H. Jiang, “Photoacoustic imaging based on MEMS mirror scanning,” Biomed. Opt. Express 1, 1278–1283 (2010).
[CrossRef]

2009 (1)

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

2008 (3)

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47, 2011–2016 (2008).
[CrossRef]

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

2007 (2)

X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15, 6696–6716 (2007).
[CrossRef]

2003 (1)

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef]

2002 (1)

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

1999 (2)

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef]

1998 (1)

Adams, K. E.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Ahn, Y.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Aldrich, M. B.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

Alencar, H.

X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007).
[CrossRef]

Arridge, S. R.

Blanchard, D. K.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Bogdanov, A.

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef]

Bonefas, E.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Bremer, C.

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

Cao, Z.

Q. Zhao, H. Jiang, Z. Cao, L. Yang, H. Mao, and M. Lipowska, “A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins,” Med. Phys. 38, 5873–5878 (2011).
[CrossRef]

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Chen, R.

Chen, Z.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Chiang, S. B.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Choe, R.

Choe, S.-W.

Corlu, A.

Cornell, K. K.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

Davis, S. C.

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).
[CrossRef]

Durduran, T.

Elledge, R.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Fife, C. E.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

Figueiredo, J.

X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007).
[CrossRef]

Fisher, R. E.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Gao, X.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Graves, E.

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef]

Grobmyer, S. R.

Guo, S.

Gutwein, L. G.

Houston, J. P.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Jiang, H.

Jung, W.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Karna, P.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Krasieva, T. B.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Leblond, F.

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).
[CrossRef]

Liao, W.

Lipowska, M.

Q. Zhao, H. Jiang, Z. Cao, L. Yang, H. Mao, and M. Lipowska, “A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins,” Med. Phys. 38, 5873–5878 (2011).
[CrossRef]

Liu, L.

Mahmood, U.

X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007).
[CrossRef]

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef]

Mao, H.

Q. Zhao, H. Jiang, Z. Cao, L. Yang, H. Mao, and M. Lipowska, “A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins,” Med. Phys. 38, 5873–5878 (2011).
[CrossRef]

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Marshall, M. V.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Maus, E. A.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

Mawad, M. E.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Mayer, R. H.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

McCormick, D. T.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Montet, X.

X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007).
[CrossRef]

Ni, C.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Nie, S.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Ntziachristos, V.

X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007).
[CrossRef]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

Peng, X. H.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Pham, H. Q.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Pogue, B. W.

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).
[CrossRef]

Rasmussen, J. C.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Reynolds, J. S.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

Ripoll, J.

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef]

Rosen, M. A.

Sampath, L.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Schnall, M. D.

Schweiger, M.

Sevick-Muraca, E. M.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

Sharma, R.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Smith, L. A.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

Snyder, P. W.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

Sorg, B. S.

Su, J.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Sun, J.

Tan, I. C.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

Tan, Y.

Y. Tan and H. Jiang, “Diffuse optical tomography guided quantitative fluorescence molecular tomography,” Appl. Opt. 47, 2011–2016 (2008).
[CrossRef]

Y. Tan, L. Yang, and H. Jiang, “DOT guided fluorescence molecular tomography of tumor cell quantification in mice,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA69.

Tang, S.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Thompson, A. B.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

Tomov, I. V.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Tromberg, B. J.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Troy, T. L.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

Tung, C.

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

Tung, C. H.

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef]

Valdes, P. A.

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).
[CrossRef]

Wang, X.

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Wang, Y. A.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Waters, D. J.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

Weissleder, R.

X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007).
[CrossRef]

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef]

Wendt, J. A.

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Wood, W. C.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Wu, L.

Xi, L.

Xie, H.

Xie, T.

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Yang, L.

Q. Zhao, H. Jiang, Z. Cao, L. Yang, H. Mao, and M. Lipowska, “A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins,” Med. Phys. 38, 5873–5878 (2011).
[CrossRef]

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Y. Tan, L. Yang, and H. Jiang, “DOT guided fluorescence molecular tomography of tumor cell quantification in mice,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA69.

Yodh, A. G.

Zhang, X.

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

Zhao, Q.

Q. Zhao, H. Jiang, Z. Cao, L. Yang, H. Mao, and M. Lipowska, “A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins,” Med. Phys. 38, 5873–5878 (2011).
[CrossRef]

Zhou, G.

Zhou, Q.

Zhu, Y.

Appl. Opt. (2)

Biomed. Opt. Express (1)

Clin. Cancer Res. (1)

L. Yang, X. H. Peng, Y. A. Wang, X. Wang, Z. Cao, C. Ni, P. Karna, X. Zhang, W. C. Wood, X. Gao, S. Nie, and H. Mao, “Receptor-targeted nanoparticles for in vivo imaging of breast cancer,” Clin. Cancer Res. 15, 4722–4732 (2009).
[CrossRef]

J. Photochem. Photobiol. B (1)

F. Leblond, S. C. Davis, P. A. Valdes, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications,” J. Photochem. Photobiol. B 98, 77–94 (2010).
[CrossRef]

Med. Phys. (2)

E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901–911 (2003).
[CrossRef]

Q. Zhao, H. Jiang, Z. Cao, L. Yang, H. Mao, and M. Lipowska, “A handheld fluorescence molecular tomography system for intraoperative optical imaging of tumor margins,” Med. Phys. 38, 5873–5878 (2011).
[CrossRef]

Nat. Biotechnol. (1)

R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, “In vivo imaging of tumors with protease-activated near-infrared fluorescent probes,” Nat. Biotechnol. 17, 375–378 (1999).
[CrossRef]

Nat. Med. (1)

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, “Fluorescence molecular tomography resolves protease activity in vivo,” Nat. Med. 8, 757–761 (2002).
[CrossRef]

Open Surg. Oncol. J. (1)

M. V. Marshall, J. C. Rasmussen, I. C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, and E. M. Sevick-Muraca, “Near-infrared fluorescence imaging in humans with indocyanine green: a review and update,” Open Surg. Oncol. J. 2, 12–25 (2010).
[CrossRef]

Opt. Express (3)

Photochem. Photobiol. (1)

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70, 87–94 (1999).
[CrossRef]

Proc. SPIE (1)

W. Jung, S. Tang, T. Xie, D. T. McCormick, Y. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe using 2-axis MEMS scanner for endoscopic multiphoton excitation microscopy,” Proc. SPIE 6851, 68510D (2008).
[CrossRef]

Radiology (2)

X. Montet, J. Figueiredo, H. Alencar, V. Ntziachristos, U. Mahmood, and R. Weissleder, “Tomographic fluorescence imaging of tumor vascular volume in mice,” Radiology 242, 751–758 (2007).
[CrossRef]

E. M. Sevick-Muraca, R. Sharma, J. C. Rasmussen, M. V. Marshall, J. A. Wendt, H. Q. Pham, E. Bonefas, J. P. Houston, L. Sampath, K. E. Adams, D. K. Blanchard, R. E. Fisher, S. B. Chiang, R. Elledge, and M. E. Mawad, “Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study,” Radiology 246, 734–741 (2008).
[CrossRef]

Other (1)

Y. Tan, L. Yang, and H. Jiang, “DOT guided fluorescence molecular tomography of tumor cell quantification in mice,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2010), paper JMA69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic of the MEMS-based FMT system, (b) photograph of the imaging probe, and (c) scanning electron microscopic (SEM) image of the MEMS mirror.

Fig. 2.
Fig. 2.

(a) Photograph of the end view of the imaging probe with the grid paper attached and with one laser scanning position (red center) shown, (b) arrangement of the sources (inner red dots) and detectors (green dots on outer rings) for FMT and one target (blue below).

Fig. 3.
Fig. 3.

FMT images at different target depths.

Fig. 4.
Fig. 4.

FMT images for a single target having different sizes.

Fig. 5.
Fig. 5.

FMT images for a single target having different ICG concentrations.

Fig. 6.
Fig. 6.

FMT images using NIR-830-ATF-IONP: (a) photograph of the mouse, (b) x ray/planar fluorescence image of the mouse, (c) cross section of the FMT slice, (d) the sagittal FMT slice. The red square in (b) indicates the FMT imaging area.

Fig. 7.
Fig. 7.

FMT images using NIR-830-BSA-IONP: (a) photograph of the mouse, (b) x ray/planar fluorescence image of the mouse, (c) cross section of the FMT slice, (d) the sagittal FMT slice. The red square in (b) indicates the FMT imaging area.

Metrics