Abstract

We report the quantitative elemental analysis of a steel sample using calibration-free laser-induced breakdown spectroscopy (CF-LIBS). A Q-switched Nd:YAG laser (532 nm wavelength) is used to produce a plasma by focusing it onto a steel sample in air at atmospheric pressure. The time-resolved spectra from atomic and ionic emission lines of the steel elements are recorded by an echelle grating spectrograph coupled with a gated intensified CCD camera and are used for the plasma characterization and quantitative analysis of the sample. The time delay at which the plasma is in local thermodynamic equilibrium as well as optically thin, necessary for elemental analysis, is deduced. An algorithm for the CF-LIBS relating the experimentally measured spectral intensity values with the basic physics of the plasma is developed and used for the determination of Fe, Cr, Ni, Mg, and Si concentrations in the steel sample. The analytical results obtained from the CF-LIBS technique agree well with the certified values of the elements in the sample, with relative uncertainties of less than 5%.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).
  2. A. W. Miziolek, V. Pallesschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS) (Cambridge University, 2006).
  3. V. N. Lednev, A. V. Yakovlev, T. A. Labutin, A. M. Povov, and N. B. Zorov, “Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry,” J. Anal. Chem. 62, 1151–1155 (2007).
    [CrossRef]
  4. V. Burakov, V. Kiris, A. Klyachkovskaya, N. Kozhukh, and S. Raikov, “Application of emission spectrometer with laser sampler with microanalysis of pigments from Hubert Robert’s canvas painting,” Microchim. Acta 156, 337–342 (2007).
    [CrossRef]
  5. A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy in archaeological-science applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
    [CrossRef]
  6. F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
    [CrossRef]
  7. B. Salle, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: influence of ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B 60, 479–490 (2005).
    [CrossRef]
  8. O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
    [CrossRef]
  9. J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” in Recent Research Developments in Applied Spectroscopy, S. G. Pandalai, ed. (Research Signpost, 1999), Vol. 2, pp. 59–67.
  10. R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
    [CrossRef]
  11. C. Aragón, J. A. Aguilera, and F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
    [CrossRef]
  12. I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. R. Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 671–683 (2001).
    [CrossRef]
  13. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
    [CrossRef]
  14. B. Sallé, D. Cremers, S. Maurice, R. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
    [CrossRef]
  15. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
    [CrossRef]
  16. G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
    [CrossRef]
  17. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
    [CrossRef]
  18. E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
    [CrossRef]
  19. K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009).
    [CrossRef]
  20. K. K. Herrera, E. Tognoni, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations,” J. Anal. At. Spectrom. 24, 413–425 (2009).
    [CrossRef]
  21. D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002).
    [CrossRef]
  22. V. S. Burakov, V. V. Kiris, P. A. Naumenkov, and S. N. Raikov, “Calibration-free laser spectral analysis of glasses and copper alloys,” J. Appl. Spectrosc. 71, 740–746 (2004).
    [CrossRef]
  23. F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004).
    [CrossRef]
  24. I. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzichino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta B 60, 1186–1201 (2005).
    [CrossRef]
  25. V. S. Burakov and S. N. Raikov, “Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 217–223 (2007).
    [CrossRef]
  26. J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, “Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from copper-based alloy laser-induced plasma,” Spectrochim. Acta B 64, 685–689 (2009).
    [CrossRef]
  27. M. V. Belkov, V. S. Burakov, V. V. Kiris, N. M. Kozhukh, and S. N. Raikov, “Spectral standard-free laser microanalysis of gold alloys,” J. Appl. Spectrosc. 72, 376–381 (2005).
    [CrossRef]
  28. F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
    [CrossRef]
  29. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
    [CrossRef]
  30. A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
    [CrossRef]
  31. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133–6137 (2003).
    [CrossRef]
  32. S. Pandhija, and A. K. Rai, “In situ multielemental monitoring in coral skeleton by CFLIBS,” Appl. Phys. B 94, 545–552 (2009).
    [CrossRef]
  33. S. Pandhija, N. K. Rai, and S. N. Thakur, “Containment concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
    [CrossRef]
  34. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B 65, 1–14 (2010).
    [CrossRef]
  35. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issue within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010).
    [CrossRef]
  36. J. M. Gomba, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta B 56, 695–705 (2001).
    [CrossRef]
  37. C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B 50, 1059–1075 (1995).
    [CrossRef]
  38. J. A. Aguilera, C. Aragón, and F. Peñalba, “Plasma shielding effect in laser ablation of metallic samples and its influence in LIBS analysis,” Appl. Surf. Sci. 127, 309–314 (1998).
    [CrossRef]
  39. S. Palanco and J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparing and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
    [CrossRef]
  40. M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
    [CrossRef]
  41. C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
    [CrossRef]
  42. J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta B 60, 1083–1091 (2005).
    [CrossRef]
  43. R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214–218 (2006).
    [CrossRef]
  44. H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).
  45. R. W. P. McWhirter, “Spectral Intensities,” in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. (Academic, 1965), pp. 201–264.
  46. G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
    [CrossRef]
  47. R. Wester and R. Noll, “Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy,” J. Appl. Phys. 106, 123302 (2009).
    [CrossRef]
  48. Ü. Aydın, P. Roth, C. D. Gehlen, and R. Noll, “Spectral line selection for time-resolved investigation of laser-induced plasmas by an iterative Boltzmann plot method,” Spectrochim. Acta B 63, 1060–1065 (2008).
    [CrossRef]
  49. National Institute of Standards and Technology, “NIST Atomic Spectra Database,” http://physics.nist.gov .
  50. T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W. Whaling, and J. W. Brault, “Lifetimes, transition probabilities, and level energies in Fe I,” J. Opt. Soc. Am B 8, 1185–1201 (1991).
    [CrossRef]

2011 (1)

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

2010 (4)

S. Pandhija, N. K. Rai, and S. N. Thakur, “Containment concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[CrossRef]

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issue within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010).
[CrossRef]

2009 (5)

R. Wester and R. Noll, “Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy,” J. Appl. Phys. 106, 123302 (2009).
[CrossRef]

S. Pandhija, and A. K. Rai, “In situ multielemental monitoring in coral skeleton by CFLIBS,” Appl. Phys. B 94, 545–552 (2009).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations,” J. Anal. At. Spectrom. 24, 413–425 (2009).
[CrossRef]

J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, “Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from copper-based alloy laser-induced plasma,” Spectrochim. Acta B 64, 685–689 (2009).
[CrossRef]

2008 (1)

Ü. Aydın, P. Roth, C. D. Gehlen, and R. Noll, “Spectral line selection for time-resolved investigation of laser-induced plasmas by an iterative Boltzmann plot method,” Spectrochim. Acta B 63, 1060–1065 (2008).
[CrossRef]

2007 (6)

V. S. Burakov and S. N. Raikov, “Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 217–223 (2007).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

V. N. Lednev, A. V. Yakovlev, T. A. Labutin, A. M. Povov, and N. B. Zorov, “Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry,” J. Anal. Chem. 62, 1151–1155 (2007).
[CrossRef]

V. Burakov, V. Kiris, A. Klyachkovskaya, N. Kozhukh, and S. Raikov, “Application of emission spectrometer with laser sampler with microanalysis of pigments from Hubert Robert’s canvas painting,” Microchim. Acta 156, 337–342 (2007).
[CrossRef]

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy in archaeological-science applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[CrossRef]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

2006 (3)

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214–218 (2006).
[CrossRef]

2005 (6)

M. V. Belkov, V. S. Burakov, V. V. Kiris, N. M. Kozhukh, and S. N. Raikov, “Spectral standard-free laser microanalysis of gold alloys,” J. Appl. Spectrosc. 72, 376–381 (2005).
[CrossRef]

I. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzichino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta B 60, 1186–1201 (2005).
[CrossRef]

B. Salle, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: influence of ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B 60, 479–490 (2005).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta B 60, 1083–1091 (2005).
[CrossRef]

B. Sallé, D. Cremers, S. Maurice, R. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

2004 (5)

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

V. S. Burakov, V. V. Kiris, P. A. Naumenkov, and S. N. Raikov, “Calibration-free laser spectral analysis of glasses and copper alloys,” J. Appl. Spectrosc. 71, 740–746 (2004).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

2003 (1)

2002 (2)

D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002).
[CrossRef]

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

2001 (2)

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. R. Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 671–683 (2001).
[CrossRef]

J. M. Gomba, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta B 56, 695–705 (2001).
[CrossRef]

2000 (1)

S. Palanco and J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparing and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

1999 (3)

1998 (1)

J. A. Aguilera, C. Aragón, and F. Peñalba, “Plasma shielding effect in laser ablation of metallic samples and its influence in LIBS analysis,” Appl. Surf. Sci. 127, 309–314 (1998).
[CrossRef]

1995 (2)

C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

1991 (1)

T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W. Whaling, and J. W. Brault, “Lifetimes, transition probabilities, and level energies in Fe I,” J. Opt. Soc. Am B 8, 1185–1201 (1991).
[CrossRef]

Aguilera, J. A.

J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, “Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from copper-based alloy laser-induced plasma,” Spectrochim. Acta B 64, 685–689 (2009).
[CrossRef]

C. Aragón, J. A. Aguilera, and F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

J. A. Aguilera, C. Aragón, and F. Peñalba, “Plasma shielding effect in laser ablation of metallic samples and its influence in LIBS analysis,” Appl. Surf. Sci. 127, 309–314 (1998).
[CrossRef]

Alti, K.

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Amponsah-Manager, K.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

Anglos, D.

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy in archaeological-science applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[CrossRef]

Aragón, C.

J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, “Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from copper-based alloy laser-induced plasma,” Spectrochim. Acta B 64, 685–689 (2009).
[CrossRef]

C. Aragón, J. A. Aguilera, and F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

J. A. Aguilera, C. Aragón, and F. Peñalba, “Plasma shielding effect in laser ablation of metallic samples and its influence in LIBS analysis,” Appl. Surf. Sci. 127, 309–314 (1998).
[CrossRef]

Aydin, Ü.

Ü. Aydın, P. Roth, C. D. Gehlen, and R. Noll, “Spectral line selection for time-resolved investigation of laser-induced plasmas by an iterative Boltzmann plot method,” Spectrochim. Acta B 63, 1060–1065 (2008).
[CrossRef]

Baliva, A.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Bassiotis, I.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. R. Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 671–683 (2001).
[CrossRef]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[CrossRef]

Belkov, M. V.

M. V. Belkov, V. S. Burakov, V. V. Kiris, N. M. Kozhukh, and S. N. Raikov, “Spectral standard-free laser microanalysis of gold alloys,” J. Appl. Spectrosc. 72, 376–381 (2005).
[CrossRef]

Benedetti, P. A.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

Bertuccelli, D.

J. M. Gomba, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta B 56, 695–705 (2001).
[CrossRef]

Bertuccelli, G.

J. M. Gomba, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta B 56, 695–705 (2001).
[CrossRef]

Brault, J. W.

T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W. Whaling, and J. W. Brault, “Lifetimes, transition probabilities, and level energies in Fe I,” J. Opt. Soc. Am B 8, 1185–1201 (1991).
[CrossRef]

Brioschi, F.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

Brunetti, G.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Bulajic, D.

D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002).
[CrossRef]

Burakov, V.

V. Burakov, V. Kiris, A. Klyachkovskaya, N. Kozhukh, and S. Raikov, “Application of emission spectrometer with laser sampler with microanalysis of pigments from Hubert Robert’s canvas painting,” Microchim. Acta 156, 337–342 (2007).
[CrossRef]

Burakov, V. S.

V. S. Burakov and S. N. Raikov, “Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 217–223 (2007).
[CrossRef]

M. V. Belkov, V. S. Burakov, V. V. Kiris, N. M. Kozhukh, and S. N. Raikov, “Spectral standard-free laser microanalysis of gold alloys,” J. Appl. Spectrosc. 72, 376–381 (2005).
[CrossRef]

V. S. Burakov, V. V. Kiris, P. A. Naumenkov, and S. N. Raikov, “Calibration-free laser spectral analysis of glasses and copper alloys,” J. Appl. Spectrosc. 71, 740–746 (2004).
[CrossRef]

Caneve, I.

F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004).
[CrossRef]

Capitelli, F.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Capitelli, M.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

Christoforetti, G.

D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002).
[CrossRef]

Ciucci, A.

Colao, F.

I. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzichino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta B 60, 1186–1201 (2005).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Corbett, R. E.

C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

Correll, T.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Corsi, M.

Cremers, D.

B. Sallé, D. Cremers, S. Maurice, R. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

Cremers, D. A.

B. Salle, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: influence of ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B 60, 479–490 (2005).
[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Cristoforetti, G.

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, “Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from copper-based alloy laser-induced plasma,” Spectrochim. Acta B 64, 685–689 (2009).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133–6137 (2003).
[CrossRef]

D’Angelo, C.

J. M. Gomba, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta B 56, 695–705 (2001).
[CrossRef]

Davies, C. M.

C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

De Giacomo, A.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

De Pascale, O.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

Dell’Aglio, M.

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[CrossRef]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

Diamantopoulou, A.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. R. Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 671–683 (2001).
[CrossRef]

Elhassan, A.

M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Fabbri, F.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Fantoni, R.

I. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzichino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta B 60, 1186–1201 (2005).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Ferrario, F.

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

Fichet, P.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

B. Sallé, D. Cremers, S. Maurice, R. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

Fornarini, I.

I. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzichino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta B 60, 1186–1201 (2005).
[CrossRef]

Gehlen, C. D.

Ü. Aydın, P. Roth, C. D. Gehlen, and R. Noll, “Spectral line selection for time-resolved investigation of laser-induced plasmas by an iterative Boltzmann plot method,” Spectrochim. Acta B 63, 1060–1065 (2008).
[CrossRef]

Giacomo, A. D.

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[CrossRef]

Giakoumaki, A.

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy in archaeological-science applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[CrossRef]

Giannoudakos, A.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. R. Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 671–683 (2001).
[CrossRef]

Giardini, A.

F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004).
[CrossRef]

Gibb, E.

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Gomba, J. M.

J. M. Gomba, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta B 56, 695–705 (2001).
[CrossRef]

Gornushkin, I.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

Gornushkin, I. B.

K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Griem, H. R.

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).

Gupta, G. P.

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Hahn, D. W.

Harith, M. A.

M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Herrera, K. K.

K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations,” J. Anal. At. Spectrom. 24, 413–425 (2009).
[CrossRef]

Hidalgo, M.

Imam, H.

M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Imran, H.

M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Ismail, M. A.

M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Kaiser, J.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[CrossRef]

Kalantzopoulou, F. R.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. R. Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 671–683 (2001).
[CrossRef]

Karney, K. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” in Recent Research Developments in Applied Spectroscopy, S. G. Pandalai, ed. (Research Signpost, 1999), Vol. 2, pp. 59–67.

Kartha, V. B.

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Kiris, V.

V. Burakov, V. Kiris, A. Klyachkovskaya, N. Kozhukh, and S. Raikov, “Application of emission spectrometer with laser sampler with microanalysis of pigments from Hubert Robert’s canvas painting,” Microchim. Acta 156, 337–342 (2007).
[CrossRef]

Kiris, V. V.

M. V. Belkov, V. S. Burakov, V. V. Kiris, N. M. Kozhukh, and S. N. Raikov, “Spectral standard-free laser microanalysis of gold alloys,” J. Appl. Spectrosc. 72, 376–381 (2005).
[CrossRef]

V. S. Burakov, V. V. Kiris, P. A. Naumenkov, and S. N. Raikov, “Calibration-free laser spectral analysis of glasses and copper alloys,” J. Appl. Spectrosc. 71, 740–746 (2004).
[CrossRef]

Klyachkovskaya, A.

V. Burakov, V. Kiris, A. Klyachkovskaya, N. Kozhukh, and S. Raikov, “Application of emission spectrometer with laser sampler with microanalysis of pigments from Hubert Robert’s canvas painting,” Microchim. Acta 156, 337–342 (2007).
[CrossRef]

Kompitsas, M.

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. R. Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 671–683 (2001).
[CrossRef]

Kozhukh, N.

V. Burakov, V. Kiris, A. Klyachkovskaya, N. Kozhukh, and S. Raikov, “Application of emission spectrometer with laser sampler with microanalysis of pigments from Hubert Robert’s canvas painting,” Microchim. Acta 156, 337–342 (2007).
[CrossRef]

Kozhukh, N. M.

M. V. Belkov, V. S. Burakov, V. V. Kiris, N. M. Kozhukh, and S. N. Raikov, “Spectral standard-free laser microanalysis of gold alloys,” J. Appl. Spectrosc. 72, 376–381 (2005).
[CrossRef]

Labutin, T. A.

V. N. Lednev, A. V. Yakovlev, T. A. Labutin, A. M. Povov, and N. B. Zorov, “Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry,” J. Anal. Chem. 62, 1151–1155 (2007).
[CrossRef]

Lacour, J.-L.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

Laserna, J. J.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

S. Palanco and J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparing and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

Lawler, J. E.

T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W. Whaling, and J. W. Brault, “Lifetimes, transition probabilities, and level energies in Fe I,” J. Opt. Soc. Am B 8, 1185–1201 (1991).
[CrossRef]

Lazic, V.

I. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzichino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta B 60, 1186–1201 (2005).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Lednev, V. N.

V. N. Lednev, A. V. Yakovlev, T. A. Labutin, A. M. Povov, and N. B. Zorov, “Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry,” J. Anal. Chem. 62, 1151–1155 (2007).
[CrossRef]

Legnaioli, S.

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133–6137 (2003).
[CrossRef]

D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002).
[CrossRef]

Liska, M.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[CrossRef]

Longo, S.

A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

Lopez-Moreno, C.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

Manhès, G.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

Marinangeli, L.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Mauchien, P.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

Maurice, S.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

B. Salle, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: influence of ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B 60, 479–490 (2005).
[CrossRef]

B. Sallé, D. Cremers, S. Maurice, R. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

McWhirter, R. W. P.

R. W. P. McWhirter, “Spectral Intensities,” in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. (Academic, 1965), pp. 201–264.

Melessanaki, K.

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy in archaeological-science applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[CrossRef]

Montgomery, D. J.

C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

Morris, G. W.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[CrossRef]

Mueller, M.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

Naumenkov, P. A.

V. S. Burakov, V. V. Kiris, P. A. Naumenkov, and S. N. Raikov, “Calibration-free laser spectral analysis of glasses and copper alloys,” J. Appl. Spectrosc. 71, 740–746 (2004).
[CrossRef]

Noll, R.

R. Wester and R. Noll, “Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy,” J. Appl. Phys. 106, 123302 (2009).
[CrossRef]

Ü. Aydın, P. Roth, C. D. Gehlen, and R. Noll, “Spectral line selection for time-resolved investigation of laser-induced plasmas by an iterative Boltzmann plot method,” Spectrochim. Acta B 63, 1060–1065 (2008).
[CrossRef]

R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214–218 (2006).
[CrossRef]

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta B 60, 1083–1091 (2005).
[CrossRef]

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

O’Brian, T. R.

T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W. Whaling, and J. W. Brault, “Lifetimes, transition probabilities, and level energies in Fe I,” J. Opt. Soc. Am B 8, 1185–1201 (1991).
[CrossRef]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma–particle interactions: still-challenging issue within the analytical plasma community,” Appl. Spectrosc. 64, 335A–366A (2010).
[CrossRef]

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations,” J. Anal. At. Spectrom. 24, 413–425 (2009).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Ori, G. G.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Palanco, S.

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

S. Palanco and J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparing and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

Palleschi, V.

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133–6137 (2003).
[CrossRef]

D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002).
[CrossRef]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Pandhija, S.

S. Pandhija, N. K. Rai, and S. N. Thakur, “Containment concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

S. Pandhija, and A. K. Rai, “In situ multielemental monitoring in coral skeleton by CFLIBS,” Appl. Phys. B 94, 545–552 (2009).
[CrossRef]

Panne, U.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

Paolini, A.

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Peñalba, F.

C. Aragón, J. A. Aguilera, and F. Peñalba, “Improvements in quantitative analysis of steel composition by laser-induced breakdown spectroscopy at atmospheric pressure using an infrared Nd:YAG laser,” Appl. Spectrosc. 53, 1259–1267 (1999).
[CrossRef]

J. A. Aguilera, C. Aragón, and F. Peñalba, “Plasma shielding effect in laser ablation of metallic samples and its influence in LIBS analysis,” Appl. Surf. Sci. 127, 309–314 (1998).
[CrossRef]

Povov, A. M.

V. N. Lednev, A. V. Yakovlev, T. A. Labutin, A. M. Povov, and N. B. Zorov, “Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry,” J. Anal. Chem. 62, 1151–1155 (2007).
[CrossRef]

Provenzano, M. R.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Radziemski, L. J.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

Rai, A. K.

S. Pandhija, and A. K. Rai, “In situ multielemental monitoring in coral skeleton by CFLIBS,” Appl. Phys. B 94, 545–552 (2009).
[CrossRef]

Rai, N. K.

S. Pandhija, N. K. Rai, and S. N. Thakur, “Containment concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

Raikov, S.

V. Burakov, V. Kiris, A. Klyachkovskaya, N. Kozhukh, and S. Raikov, “Application of emission spectrometer with laser sampler with microanalysis of pigments from Hubert Robert’s canvas painting,” Microchim. Acta 156, 337–342 (2007).
[CrossRef]

Raikov, S. N.

V. S. Burakov and S. N. Raikov, “Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 217–223 (2007).
[CrossRef]

M. V. Belkov, V. S. Burakov, V. V. Kiris, N. M. Kozhukh, and S. N. Raikov, “Spectral standard-free laser microanalysis of gold alloys,” J. Appl. Spectrosc. 72, 376–381 (2005).
[CrossRef]

V. S. Burakov, V. V. Kiris, P. A. Naumenkov, and S. N. Raikov, “Calibration-free laser spectral analysis of glasses and copper alloys,” J. Appl. Spectrosc. 71, 740–746 (2004).
[CrossRef]

Rastelli, S.

Roth, P.

Ü. Aydın, P. Roth, C. D. Gehlen, and R. Noll, “Spectral line selection for time-resolved investigation of laser-induced plasmas by an iterative Boltzmann plot method,” Spectrochim. Acta B 63, 1060–1065 (2008).
[CrossRef]

Salle, B.

B. Salle, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: influence of ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B 60, 479–490 (2005).
[CrossRef]

Sallé, B.

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

B. Sallé, D. Cremers, S. Maurice, R. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

Salvetti, A.

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133–6137 (2003).
[CrossRef]

D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002).
[CrossRef]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Samek, O.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[CrossRef]

Santhosh, C.

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Sattmann, R.

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Senesi, N.

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

Singh, J. P.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” in Recent Research Developments in Applied Spectroscopy, S. G. Pandalai, ed. (Research Signpost, 1999), Vol. 2, pp. 59–67.

Smith, B. W.

K. K. Herrera, E. Tognoni, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations,” J. Anal. At. Spectrom. 24, 413–425 (2009).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Spizzichino, V.

I. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzichino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta B 60, 1186–1201 (2005).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004).
[CrossRef]

Sturm, V.

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta B 60, 1083–1091 (2005).
[CrossRef]

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Sunderaraman, M.

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Suri, B. M.

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Telle, H. H.

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

Thakur, S. N.

S. Pandhija, N. K. Rai, and S. N. Thakur, “Containment concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

Tognoni, E.

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations,” J. Anal. At. Spectrom. 24, 413–425 (2009).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009).
[CrossRef]

J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, “Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from copper-based alloy laser-induced plasma,” Spectrochim. Acta B 64, 685–689 (2009).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebona, “Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis,” Appl. Opt. 42, 6133–6137 (2003).
[CrossRef]

D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002).
[CrossRef]

A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy,” Appl. Spectrosc. 53, 960–964 (1999).
[CrossRef]

Unnikrishnan, V. K.

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Vallebona, C.

Verma, A.

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

Vrenegor, J.

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta B 60, 1083–1091 (2005).
[CrossRef]

Wester, R.

R. Wester and R. Noll, “Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy,” J. Appl. Phys. 106, 123302 (2009).
[CrossRef]

Whaling, W.

T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W. Whaling, and J. W. Brault, “Lifetimes, transition probabilities, and level energies in Fe I,” J. Opt. Soc. Am B 8, 1185–1201 (1991).
[CrossRef]

Wickliffe, M. E.

T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W. Whaling, and J. W. Brault, “Lifetimes, transition probabilities, and level energies in Fe I,” J. Opt. Soc. Am B 8, 1185–1201 (1991).
[CrossRef]

Wiens, R.

B. Sallé, D. Cremers, S. Maurice, R. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

Wiens, R. C.

B. Salle, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: influence of ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B 60, 479–490 (2005).
[CrossRef]

Winefordner, J. D.

K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations,” J. Anal. At. Spectrom. 24, 413–425 (2009).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

Yakovlev, A. V.

V. N. Lednev, A. V. Yakovlev, T. A. Labutin, A. M. Povov, and N. B. Zorov, “Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry,” J. Anal. Chem. 62, 1151–1155 (2007).
[CrossRef]

Youniss, W. T.

M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

Yueh, F. Y.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” in Recent Research Developments in Applied Spectroscopy, S. G. Pandalai, ed. (Research Signpost, 1999), Vol. 2, pp. 59–67.

Zhang, H.

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” in Recent Research Developments in Applied Spectroscopy, S. G. Pandalai, ed. (Research Signpost, 1999), Vol. 2, pp. 59–67.

Zorov, N. B.

V. N. Lednev, A. V. Yakovlev, T. A. Labutin, A. M. Povov, and N. B. Zorov, “Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry,” J. Anal. Chem. 62, 1151–1155 (2007).
[CrossRef]

Anal. Bioanal. Chem. (2)

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy in archaeological-science applications and prospects,” Anal. Bioanal. Chem. 387, 749–760 (2007).
[CrossRef]

R. Noll, “Terms and notations for laser-induced breakdown spectroscopy,” Anal. Bioanal. Chem. 385, 214–218 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

O. Samek, D. C. S. Beddows, H. H. Telle, G. W. Morris, M. Liska, and J. Kaiser, “Quantitative analysis of trace metal accumulation in teeth using laser-induced breakdown spectroscopy,” Appl. Phys. A 69, S179–S182 (1999).
[CrossRef]

Appl. Phys. B (2)

S. Pandhija, and A. K. Rai, “In situ multielemental monitoring in coral skeleton by CFLIBS,” Appl. Phys. B 94, 545–552 (2009).
[CrossRef]

S. Pandhija, N. K. Rai, and S. N. Thakur, “Containment concentration in environmental samples using LIBS and CF-LIBS,” Appl. Phys. B 98, 231–241 (2010).
[CrossRef]

Appl. Spectrosc. (3)

Appl. Surf. Sci. (1)

J. A. Aguilera, C. Aragón, and F. Peñalba, “Plasma shielding effect in laser ablation of metallic samples and its influence in LIBS analysis,” Appl. Surf. Sci. 127, 309–314 (1998).
[CrossRef]

Geoderma (1)

F. Capitelli, F. Colao, M. R. Provenzano, R. Fantoni, G. Brunetti, and N. Senesi, “Determination of heavy metals in soils by laser induced breakdown spectroscopy,” Geoderma 106, 45–62 (2002).
[CrossRef]

J. Alloys Compd. (1)

G. P. Gupta, B. M. Suri, A. Verma, M. Sunderaraman, V. K. Unnikrishnan, K. Alti, V. B. Kartha, and C. Santhosh, “Quantitative elemental analysis of nickel alloys using calibrationbased laser-induced breakdown spectroscopy,” J. Alloys Compd. 509, 3740–3745 (2011).
[CrossRef]

J. Anal. At. Spectrom. (8)

K. K. Herrera, E. Tognoni, N. Omenetto, I. B. Gornushkin, B. W. Smith, and J. D. Winefordner, “Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions,” J. Anal. At. Spectrom. 24, 426–438 (2009).
[CrossRef]

K. K. Herrera, E. Tognoni, N. Omenetto, B. W. Smith, and J. D. Winefordner, “Semi-quantitative analysis of metal alloys, brass and soil samples by calibration-free laser-induced breakdown spectroscopy: recent results and considerations,” J. Anal. At. Spectrom. 24, 413–425 (2009).
[CrossRef]

F. Colao, R. Fantoni, V. Lazic, I. Caneve, A. Giardini, and V. Spizzichino, “LIBS as a diagnostic tool during the laser cleaning of copper based alloys: experimental results,” J. Anal. At. Spectrom. 19, 502–504 (2004).
[CrossRef]

S. Palanco and J. J. Laserna, “Full automation of a laser-induced breakdown spectrometer for quality assessment in the steel industry with sample handling, surface preparing and quantitative analysis capabilities,” J. Anal. At. Spectrom. 15, 1321–1327 (2000).
[CrossRef]

M. A. Ismail, H. Imam, A. Elhassan, H. Imran, A. Elhassan, W. T. Youniss, and M. A. Harith, “LIBS limit of detection and plasma parameter of some elements in two different metallic matrices,” J. Anal. At. Spectrom. 19, 489–494 (2004).
[CrossRef]

C. Lopez-Moreno, K. Amponsah-Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20, 552–556 (2005).
[CrossRef]

J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).
[CrossRef]

G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, P. A. Benedetti, F. Brioschi, and F. Ferrario, “Quantitative analysis of aluminium alloys by low-energy, highrepetition rate laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 21, 697–702 (2006).
[CrossRef]

J. Anal. Chem. (1)

V. N. Lednev, A. V. Yakovlev, T. A. Labutin, A. M. Povov, and N. B. Zorov, “Selection of an analytical line for determining lithium in aluminum alloys by laser induced breakdown spectrometry,” J. Anal. Chem. 62, 1151–1155 (2007).
[CrossRef]

J. Appl. Phys. (1)

R. Wester and R. Noll, “Heuristic modeling of spectral plasma emission for laser-induced breakdown spectroscopy,” J. Appl. Phys. 106, 123302 (2009).
[CrossRef]

J. Appl. Spectrosc. (2)

V. S. Burakov, V. V. Kiris, P. A. Naumenkov, and S. N. Raikov, “Calibration-free laser spectral analysis of glasses and copper alloys,” J. Appl. Spectrosc. 71, 740–746 (2004).
[CrossRef]

M. V. Belkov, V. S. Burakov, V. V. Kiris, N. M. Kozhukh, and S. N. Raikov, “Spectral standard-free laser microanalysis of gold alloys,” J. Appl. Spectrosc. 72, 376–381 (2005).
[CrossRef]

J. Opt. Soc. Am B (1)

T. R. O’Brian, M. E. Wickliffe, J. E. Lawler, W. Whaling, and J. W. Brault, “Lifetimes, transition probabilities, and level energies in Fe I,” J. Opt. Soc. Am B 8, 1185–1201 (1991).
[CrossRef]

J. Phys. D (1)

R. Sattmann, V. Sturm, and R. Noll, “Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd:YAG laser pulses,” J. Phys. D 28, 2181–2187 (1995).
[CrossRef]

Microchim. Acta (1)

V. Burakov, V. Kiris, A. Klyachkovskaya, N. Kozhukh, and S. Raikov, “Application of emission spectrometer with laser sampler with microanalysis of pigments from Hubert Robert’s canvas painting,” Microchim. Acta 156, 337–342 (2007).
[CrossRef]

Planet. Space Sci. (1)

F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. G. Ori, L. Marinangeli, and A. Baliva, “Investigation of LIBS feasibility for in situ planetary exploration: an analysis on Martian rock analogues,” Planet. Space Sci. 52, 117–123 (2004).
[CrossRef]

Spectrochim. Acta B (16)

B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, S. Maurice, and G. Manhès, “Comparative study of different methodologies for quantitative rock analysis by laser-induced breakdown spectroscopy in a simulated Martian atmosphere,” Spectrochim. Acta B 61, 301–313 (2006).
[CrossRef]

A. De Giacomo, M. Dell’Aglio, O. De Pascale, S. Longo, and M. Capitelli, “Laser induced breakdown spectroscopy on meteorites,” Spectrochim. Acta B 62, 1606–1611 (2007).
[CrossRef]

I. Bassiotis, A. Diamantopoulou, A. Giannoudakos, F. R. Kalantzopoulou, and M. Kompitsas, “Effects of experimental parameters in quantitative analysis of steel alloy by laser-induced breakdown spectroscopy,” Spectrochim. Acta B 56, 671–683 (2001).
[CrossRef]

B. Sallé, D. Cremers, S. Maurice, R. Wiens, and P. Fichet, “Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions,” Spectrochim. Acta B 60, 805–815 (2005).
[CrossRef]

J. Vrenegor, R. Noll, and V. Sturm, “Investigation of matrix effects in laser-induced breakdown spectroscopy plasmas of high-alloy steel for matrix and minor elements,” Spectrochim. Acta B 60, 1083–1091 (2005).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-free laser-induced breakdown spectroscopy: state of the art,” Spectrochim. Acta B 65, 1–14 (2010).
[CrossRef]

J. M. Gomba, C. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Spectroscopic characterization of laser induced breakdown in aluminium–lithium alloy samples for quantitative determination of traces,” Spectrochim. Acta B 56, 695–705 (2001).
[CrossRef]

C. M. Davies, H. H. Telle, D. J. Montgomery, and R. E. Corbett, “Quantitative analysis using remote laser-induced breakdown spectroscopy (LIBS),” Spectrochim. Acta B 50, 1059–1075 (1995).
[CrossRef]

B. Salle, D. A. Cremers, S. Maurice, and R. C. Wiens, “Laser-induced breakdown spectroscopy for space exploration applications: influence of ambient pressure on the calibration curves prepared from soil and clay samples,” Spectrochim. Acta B 60, 479–490 (2005).
[CrossRef]

E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, M. Mueller, U. Panne, and I. Gornushkin, “A numerical study of expected accuracy and precision in calibration-free laser-induced breakdown spectroscopy in the assumption of ideal analytical plasma,” Spectrochim. Acta B 62, 1287–1302 (2007).
[CrossRef]

D. Bulajic, M. Corsi, G. Christoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A procedure for correcting self-absorption in calibration-free laser-induced breakdown spectroscopy,” Spectrochim. Acta B 57, 339–353 (2002).
[CrossRef]

I. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzichino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach,” Spectrochim. Acta B 60, 1186–1201 (2005).
[CrossRef]

V. S. Burakov and S. N. Raikov, “Quantitative analysis of alloys and glasses by a calibration-free method using laser-induced breakdown spectroscopy,” Spectrochim. Acta B 62, 217–223 (2007).
[CrossRef]

J. A. Aguilera, C. Aragón, G. Cristoforetti, and E. Tognoni, “Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from copper-based alloy laser-induced plasma,” Spectrochim. Acta B 64, 685–689 (2009).
[CrossRef]

Ü. Aydın, P. Roth, C. D. Gehlen, and R. Noll, “Spectral line selection for time-resolved investigation of laser-induced plasmas by an iterative Boltzmann plot method,” Spectrochim. Acta B 63, 1060–1065 (2008).
[CrossRef]

G. Cristoforetti, A. D. Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, “Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion,” Spectrochim. Acta B 65, 86–95 (2010).
[CrossRef]

Other (6)

H. R. Griem, Principles of Plasma Spectroscopy (Cambridge University, 1997).

R. W. P. McWhirter, “Spectral Intensities,” in Plasma Diagnostic Techniques, R. H. Huddlestone and S. L. Leonard, eds. (Academic, 1965), pp. 201–264.

National Institute of Standards and Technology, “NIST Atomic Spectra Database,” http://physics.nist.gov .

J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, “A preliminary study of the determination of uranium, plutonium and neptunium by laser-induced breakdown spectroscopy,” in Recent Research Developments in Applied Spectroscopy, S. G. Pandalai, ed. (Research Signpost, 1999), Vol. 2, pp. 59–67.

D. A. Cremers and L. J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, 2006).

A. W. Miziolek, V. Pallesschi, and I. Schechter, eds., Laser-Induced Breakdown Spectroscopy (LIBS) (Cambridge University, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the experimental setup for LIBS studies. BS, beam splitter; DO, digital oscilloscope; ECA, emission collection assembly; FPD, fast photodiode; M, mirror.

Fig. 2.
Fig. 2.

Schematic diagram of the CF-LIBS algorithm.

Fig. 3.
Fig. 3.

LIBS spectra of the steel sample at a delay time of 1000 ns, covering (a) atomic lines of Fe, Cr, Ni, Mn, and Si and (b) ionic lines of Fe used in the analysis.

Fig. 4.
Fig. 4.

Boltzmann plot made using seven Fe I transitions, considering the intensities at a delay time of 1000 ns. The solid line represents the results of a linear best fit. The slope gives a temperature equal to 0.875±0.044eV.

Tables (3)

Tables Icon

Table 1. Data for the Atomic and Ionic Emission Lines Used in the Analysis

Tables Icon

Table 2. Temperature, Electron Density, and Density Ratios in LIBS Plasma Determined from Line Intensities at 1000 ns Delay Time

Tables Icon

Table 3. Comparison of Elemental Contents of the Steel Sample from CF-LIBS Analysis with Certified Values

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

distance=i=1N|MiCi|,
Iki,Zα=FnZαgk,ZαAki,Zαλki,ZαPZαexp(Ek,ZαkBT),
ln(IkiαλkiαgkαAkiα)=EkαkBT+ln(FnZαPZα).
ne=IZIZ+16.04×1021(TeV)3/2exp[(Ek,Z+1+Ek,ZχZ)/kBT]cm3,
nenZ+1αnZα=6.04×1021TeV3/2PZ+1αPZαexp(χZαTeV)cm3.
nZαnZ+1β=Iα,ZIβ,Z+1Pα,Z(T)Pβ,Z+1(T)exp(Ekβ,Z+1Ekα,ZkBT).
ne(cm3)1.6×1012T(K)1/2[ΔE(eV)]3,
I1I2=(λnm,Zλki,Z)(Aki,ZAnm,Z)(gk,Zgn,Z)exp(Ek,ZEn,ZkBT),
ntotα=n0α+n1α+n2α++nZα=n0α[1+Z=1ZNnZαn0α],
neα=n1α+2n2α+3n3α+=Z=1ZNZnZα.
SZα=nenZ+1αnZα=6.04×1021TeV3/2PZ+1αPZαexp(χZαTeV)cm3,
RZα=nZα/n0α.
RZα=nZαn0α=n1αn0αn2αn1α⋯⋯⋯nZαnZ1α=S1αneS2αne⋯⋯⋯SZαne=j=1ZSjαneZ.
neα=ntotαZ=1ZNZRZα1+Z=1ZNRZα,
nZα=ntotα1+Z=1ZNRZαRZα,
nZαnZ+1β=n0αn0βRZαRZ+1β.
ne=α=1Mneα,
cα=ntotααntotα,
cα=ntotαμααntotαμα,
δTT=kBTE(δII+δAA).

Metrics