Abstract

Nitric oxide (NO) concentrations were measured using the γ band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO γ band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially γ(0,0) and γ(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer–Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index α that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO γ bands.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. D. Vivie and S. D. Peyerimhoff, “Theoretical spectroscopy of the NO radical. I. Potential curves and lifetimes of excited states,” J. Chem. Phys. 89, 3028–3043 (1988).
    [CrossRef]
  2. M. R. Winchester and R. K. Marcus, “Investigations of self-absorption in a radio-frequency glow discharge device,” Spectrochim. Acta B 51, 839–850 (1996).
    [CrossRef]
  3. P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
    [CrossRef]
  4. J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0,0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
    [CrossRef]
  5. J. Danielak, U. Domin, R. Kępa, M. Rytel, and M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+−X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402(1997).
    [CrossRef]
  6. C. S. Park, M. E. Newfield, D. G. Fletcher, T. Gökçen, and S. P. Sharma, “Spectroscopic emission measurements within the blunt-body shock layer in an arcjet flow,” J. Thermophys. Heat Transfer 12, 190–197 (1998).
    [CrossRef]
  7. C. O. Laux, R. J. Gessman, and C. H. Kruger, “Modeling the UV and VUV radiative emission of high-temperature air,” in AIAA 28th Thermophysics Conference (American Institute of Aeronautics and Astronautics, 1993), paper 93–2802.
  8. S. Chauveau, M. Y. Perrin, P. Riviere, and A. Souani, “Contributions of diatomic molecular electronic systems to heated air radiation,” J. Quant. Spectrosc. Radiat. Transfer 72, 503–530 (2002).
    [CrossRef]
  9. R. Olszewski and M. Zubek, “A study of electron impact excitation of the A2Σ+ state of nitric oxide in the near-threshold energy range,” Chem. Phys. Lett. 340, 249–255 (2001).
    [CrossRef]
  10. W. F. Lin, B. Zhang, W. H. Hou, D. W. Li, and H. M. Yang, “Characteristics of emissive spectrum and the removal of nitric oxide in N2/O2/NO plasma with argon additive,” J. Environ. Sci. (China) 21, 790–794 (2009).
    [CrossRef]
  11. Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
    [CrossRef]
  12. L. Leštinská, V. Martišovitš, and Z. Machala, “Corona discharge as a temperature probe of atmospheric air microwave plasma jet,” J. Quant. Spectrosc. Radiat. Transfer 112, 2779–2786 (2011).
    [CrossRef]
  13. R. Ono, Y. Teramoto, and T. Oda, “Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge,” Plasma Sources Sci. Technol. 19, 015009 (2010).
    [CrossRef]
  14. Z.-M. Peng, Y.-J. Ding, Q.-S. Yang, and Z.-L. Jiang, “Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas,” Acta Phys. Sin. 60, 053302 (2011) (in Chinese; English summary).
  15. Z.-M. Peng, Y.-J. Ding, X.-D. Zhai, Q.-S. Yang, and Z.-L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
    [CrossRef]
  16. H. Trad, P. Higelin, N. Djebaïli-Chaumeix, and C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0,0) and γ(1,0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
    [CrossRef]
  17. A. Fateev and S. Clausen, “In situ gas temperature measurements by UV-absorption spectroscopy,” Int. J. Thermophys. 30, 265–275 (2009).
    [CrossRef]
  18. C. S. Cooper and N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
    [CrossRef]
  19. R. Stevens, P. Ewart, H. Ma, and C. R. Stone, “Measurement of nitric oxide concentration in a spark-ignition engine using degenerate four-wave mixing,” Combust. Flame 148, 223–233 (2007).
    [CrossRef]
  20. J. Luque and D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+−X2Π and D2Σ+−X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
    [CrossRef]
  21. T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
    [CrossRef]
  22. R. R. Reddy, Y. N. Ahammed, D. B. Basha, K. Narasimhulu, L. S. S. Reddy, and K. R. Gopal, “Spectroscopic studies of atmospheric interest on NO and NO+,” J. Quant. Spectrosc. Radiat. Transfer 97, 344–353 (2006).
    [CrossRef]
  23. R. J. Spindler, L. Isaacson, and T. Wentink, “Franck–Condon factors and r-centroids for the gamma system of NO,” J. Quant. Spectrosc. Radiat. Transfer 10621–628 (1970).
    [CrossRef]
  24. J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation for diatomic molecules,” http://www.sri.com/psd/lifbase/ .
  25. A. J. D. Farmer, V. Hasson, and R. W. Nicholls, “Absolute oscillator strength measurements of the (υ′′=0, υ′=0−3) bands of the (A2Σ−X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972).
    [CrossRef]

2011 (3)

L. Leštinská, V. Martišovitš, and Z. Machala, “Corona discharge as a temperature probe of atmospheric air microwave plasma jet,” J. Quant. Spectrosc. Radiat. Transfer 112, 2779–2786 (2011).
[CrossRef]

Z.-M. Peng, Y.-J. Ding, Q.-S. Yang, and Z.-L. Jiang, “Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas,” Acta Phys. Sin. 60, 053302 (2011) (in Chinese; English summary).

Z.-M. Peng, Y.-J. Ding, X.-D. Zhai, Q.-S. Yang, and Z.-L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

2010 (2)

R. Ono, Y. Teramoto, and T. Oda, “Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge,” Plasma Sources Sci. Technol. 19, 015009 (2010).
[CrossRef]

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

2009 (3)

W. F. Lin, B. Zhang, W. H. Hou, D. W. Li, and H. M. Yang, “Characteristics of emissive spectrum and the removal of nitric oxide in N2/O2/NO plasma with argon additive,” J. Environ. Sci. (China) 21, 790–794 (2009).
[CrossRef]

A. Fateev and S. Clausen, “In situ gas temperature measurements by UV-absorption spectroscopy,” Int. J. Thermophys. 30, 265–275 (2009).
[CrossRef]

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

2007 (1)

R. Stevens, P. Ewart, H. Ma, and C. R. Stone, “Measurement of nitric oxide concentration in a spark-ignition engine using degenerate four-wave mixing,” Combust. Flame 148, 223–233 (2007).
[CrossRef]

2006 (1)

R. R. Reddy, Y. N. Ahammed, D. B. Basha, K. Narasimhulu, L. S. S. Reddy, and K. R. Gopal, “Spectroscopic studies of atmospheric interest on NO and NO+,” J. Quant. Spectrosc. Radiat. Transfer 97, 344–353 (2006).
[CrossRef]

2005 (1)

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, and C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0,0) and γ(1,0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

2002 (1)

S. Chauveau, M. Y. Perrin, P. Riviere, and A. Souani, “Contributions of diatomic molecular electronic systems to heated air radiation,” J. Quant. Spectrosc. Radiat. Transfer 72, 503–530 (2002).
[CrossRef]

2001 (1)

R. Olszewski and M. Zubek, “A study of electron impact excitation of the A2Σ+ state of nitric oxide in the near-threshold energy range,” Chem. Phys. Lett. 340, 249–255 (2001).
[CrossRef]

2000 (1)

C. S. Cooper and N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
[CrossRef]

1999 (1)

J. Luque and D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+−X2Π and D2Σ+−X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

1998 (1)

C. S. Park, M. E. Newfield, D. G. Fletcher, T. Gökçen, and S. P. Sharma, “Spectroscopic emission measurements within the blunt-body shock layer in an arcjet flow,” J. Thermophys. Heat Transfer 12, 190–197 (1998).
[CrossRef]

1997 (2)

J. Danielak, U. Domin, R. Kępa, M. Rytel, and M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+−X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402(1997).
[CrossRef]

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

1996 (1)

M. R. Winchester and R. K. Marcus, “Investigations of self-absorption in a radio-frequency glow discharge device,” Spectrochim. Acta B 51, 839–850 (1996).
[CrossRef]

1992 (1)

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0,0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

1988 (1)

R. D. Vivie and S. D. Peyerimhoff, “Theoretical spectroscopy of the NO radical. I. Potential curves and lifetimes of excited states,” J. Chem. Phys. 89, 3028–3043 (1988).
[CrossRef]

1972 (1)

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, “Absolute oscillator strength measurements of the (υ′′=0, υ′=0−3) bands of the (A2Σ−X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972).
[CrossRef]

1970 (1)

R. J. Spindler, L. Isaacson, and T. Wentink, “Franck–Condon factors and r-centroids for the gamma system of NO,” J. Quant. Spectrosc. Radiat. Transfer 10621–628 (1970).
[CrossRef]

Ahammed, Y. N.

R. R. Reddy, Y. N. Ahammed, D. B. Basha, K. Narasimhulu, L. S. S. Reddy, and K. R. Gopal, “Spectroscopic studies of atmospheric interest on NO and NO+,” J. Quant. Spectrosc. Radiat. Transfer 97, 344–353 (2006).
[CrossRef]

Basha, D. B.

R. R. Reddy, Y. N. Ahammed, D. B. Basha, K. Narasimhulu, L. S. S. Reddy, and K. R. Gopal, “Spectroscopic studies of atmospheric interest on NO and NO+,” J. Quant. Spectrosc. Radiat. Transfer 97, 344–353 (2006).
[CrossRef]

Carter, C. D.

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0,0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Chauveau, S.

S. Chauveau, M. Y. Perrin, P. Riviere, and A. Souani, “Contributions of diatomic molecular electronic systems to heated air radiation,” J. Quant. Spectrosc. Radiat. Transfer 72, 503–530 (2002).
[CrossRef]

Clausen, S.

A. Fateev and S. Clausen, “In situ gas temperature measurements by UV-absorption spectroscopy,” Int. J. Thermophys. 30, 265–275 (2009).
[CrossRef]

Cooper, C. S.

C. S. Cooper and N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
[CrossRef]

Crosley, D. R.

J. Luque and D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+−X2Π and D2Σ+−X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

Danielak, J.

J. Danielak, U. Domin, R. Kępa, M. Rytel, and M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+−X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402(1997).
[CrossRef]

Ding, Y.-J.

Z.-M. Peng, Y.-J. Ding, Q.-S. Yang, and Z.-L. Jiang, “Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas,” Acta Phys. Sin. 60, 053302 (2011) (in Chinese; English summary).

Z.-M. Peng, Y.-J. Ding, X.-D. Zhai, Q.-S. Yang, and Z.-L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Djebaïli-Chaumeix, N.

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, and C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0,0) and γ(1,0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

Domin, U.

J. Danielak, U. Domin, R. Kępa, M. Rytel, and M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+−X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402(1997).
[CrossRef]

Ewart, P.

R. Stevens, P. Ewart, H. Ma, and C. R. Stone, “Measurement of nitric oxide concentration in a spark-ignition engine using degenerate four-wave mixing,” Combust. Flame 148, 223–233 (2007).
[CrossRef]

Farmer, A. J. D.

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, “Absolute oscillator strength measurements of the (υ′′=0, υ′=0−3) bands of the (A2Σ−X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972).
[CrossRef]

Fateev, A.

A. Fateev and S. Clausen, “In situ gas temperature measurements by UV-absorption spectroscopy,” Int. J. Thermophys. 30, 265–275 (2009).
[CrossRef]

Fletcher, D. G.

C. S. Park, M. E. Newfield, D. G. Fletcher, T. Gökçen, and S. P. Sharma, “Spectroscopic emission measurements within the blunt-body shock layer in an arcjet flow,” J. Thermophys. Heat Transfer 12, 190–197 (1998).
[CrossRef]

Gessman, R. J.

C. O. Laux, R. J. Gessman, and C. H. Kruger, “Modeling the UV and VUV radiative emission of high-temperature air,” in AIAA 28th Thermophysics Conference (American Institute of Aeronautics and Astronautics, 1993), paper 93–2802.

Gökçen, T.

C. S. Park, M. E. Newfield, D. G. Fletcher, T. Gökçen, and S. P. Sharma, “Spectroscopic emission measurements within the blunt-body shock layer in an arcjet flow,” J. Thermophys. Heat Transfer 12, 190–197 (1998).
[CrossRef]

Gopal, K. R.

R. R. Reddy, Y. N. Ahammed, D. B. Basha, K. Narasimhulu, L. S. S. Reddy, and K. R. Gopal, “Spectroscopic studies of atmospheric interest on NO and NO+,” J. Quant. Spectrosc. Radiat. Transfer 97, 344–353 (2006).
[CrossRef]

Hasson, V.

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, “Absolute oscillator strength measurements of the (υ′′=0, υ′=0−3) bands of the (A2Σ−X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972).
[CrossRef]

Higelin, P.

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, and C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0,0) and γ(1,0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

Hou, W. H.

W. F. Lin, B. Zhang, W. H. Hou, D. W. Li, and H. M. Yang, “Characteristics of emissive spectrum and the removal of nitric oxide in N2/O2/NO plasma with argon additive,” J. Environ. Sci. (China) 21, 790–794 (2009).
[CrossRef]

Humphries, W. H.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Isaacson, L.

R. J. Spindler, L. Isaacson, and T. Wentink, “Franck–Condon factors and r-centroids for the gamma system of NO,” J. Quant. Spectrosc. Radiat. Transfer 10621–628 (1970).
[CrossRef]

Jiang, Z.-L.

Z.-M. Peng, Y.-J. Ding, X.-D. Zhai, Q.-S. Yang, and Z.-L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Z.-M. Peng, Y.-J. Ding, Q.-S. Yang, and Z.-L. Jiang, “Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas,” Acta Phys. Sin. 60, 053302 (2011) (in Chinese; English summary).

Kepa, R.

J. Danielak, U. Domin, R. Kępa, M. Rytel, and M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+−X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402(1997).
[CrossRef]

Kruger, C. H.

C. O. Laux, R. J. Gessman, and C. H. Kruger, “Modeling the UV and VUV radiative emission of high-temperature air,” in AIAA 28th Thermophysics Conference (American Institute of Aeronautics and Astronautics, 1993), paper 93–2802.

Laurendeau, N. M.

C. S. Cooper and N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
[CrossRef]

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0,0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Laux, C. O.

C. O. Laux, R. J. Gessman, and C. H. Kruger, “Modeling the UV and VUV radiative emission of high-temperature air,” in AIAA 28th Thermophysics Conference (American Institute of Aeronautics and Astronautics, 1993), paper 93–2802.

Leštinská, L.

L. Leštinská, V. Martišovitš, and Z. Machala, “Corona discharge as a temperature probe of atmospheric air microwave plasma jet,” J. Quant. Spectrosc. Radiat. Transfer 112, 2779–2786 (2011).
[CrossRef]

Li, D. W.

W. F. Lin, B. Zhang, W. H. Hou, D. W. Li, and H. M. Yang, “Characteristics of emissive spectrum and the removal of nitric oxide in N2/O2/NO plasma with argon additive,” J. Environ. Sci. (China) 21, 790–794 (2009).
[CrossRef]

Lin, W. F.

W. F. Lin, B. Zhang, W. H. Hou, D. W. Li, and H. M. Yang, “Characteristics of emissive spectrum and the removal of nitric oxide in N2/O2/NO plasma with argon additive,” J. Environ. Sci. (China) 21, 790–794 (2009).
[CrossRef]

Lou, X. T.

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

Luque, J.

J. Luque and D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+−X2Π and D2Σ+−X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

Ma, H.

R. Stevens, P. Ewart, H. Ma, and C. R. Stone, “Measurement of nitric oxide concentration in a spark-ignition engine using degenerate four-wave mixing,” Combust. Flame 148, 223–233 (2007).
[CrossRef]

Machala, Z.

L. Leštinská, V. Martišovitš, and Z. Machala, “Corona discharge as a temperature probe of atmospheric air microwave plasma jet,” J. Quant. Spectrosc. Radiat. Transfer 112, 2779–2786 (2011).
[CrossRef]

Marcus, R. K.

M. R. Winchester and R. K. Marcus, “Investigations of self-absorption in a radio-frequency glow discharge device,” Spectrochim. Acta B 51, 839–850 (1996).
[CrossRef]

Martišovitš, V.

L. Leštinská, V. Martišovitš, and Z. Machala, “Corona discharge as a temperature probe of atmospheric air microwave plasma jet,” J. Quant. Spectrosc. Radiat. Transfer 112, 2779–2786 (2011).
[CrossRef]

Mounaim-Rousselle, C.

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, and C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0,0) and γ(1,0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

Narasimhulu, K.

R. R. Reddy, Y. N. Ahammed, D. B. Basha, K. Narasimhulu, L. S. S. Reddy, and K. R. Gopal, “Spectroscopic studies of atmospheric interest on NO and NO+,” J. Quant. Spectrosc. Radiat. Transfer 97, 344–353 (2006).
[CrossRef]

Newfield, M. E.

C. S. Park, M. E. Newfield, D. G. Fletcher, T. Gökçen, and S. P. Sharma, “Spectroscopic emission measurements within the blunt-body shock layer in an arcjet flow,” J. Thermophys. Heat Transfer 12, 190–197 (1998).
[CrossRef]

Nicholls, R. W.

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, “Absolute oscillator strength measurements of the (υ′′=0, υ′=0−3) bands of the (A2Σ−X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972).
[CrossRef]

Oda, T.

R. Ono, Y. Teramoto, and T. Oda, “Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge,” Plasma Sources Sci. Technol. 19, 015009 (2010).
[CrossRef]

Olszewski, R.

R. Olszewski and M. Zubek, “A study of electron impact excitation of the A2Σ+ state of nitric oxide in the near-threshold energy range,” Chem. Phys. Lett. 340, 249–255 (2001).
[CrossRef]

Ono, R.

R. Ono, Y. Teramoto, and T. Oda, “Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge,” Plasma Sources Sci. Technol. 19, 015009 (2010).
[CrossRef]

Park, C. S.

C. S. Park, M. E. Newfield, D. G. Fletcher, T. Gökçen, and S. P. Sharma, “Spectroscopic emission measurements within the blunt-body shock layer in an arcjet flow,” J. Thermophys. Heat Transfer 12, 190–197 (1998).
[CrossRef]

Patterson, B. D.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Paul, P. H.

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

Peng, Z.-M.

Z.-M. Peng, Y.-J. Ding, Q.-S. Yang, and Z.-L. Jiang, “Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas,” Acta Phys. Sin. 60, 053302 (2011) (in Chinese; English summary).

Z.-M. Peng, Y.-J. Ding, X.-D. Zhai, Q.-S. Yang, and Z.-L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Perrin, M. Y.

S. Chauveau, M. Y. Perrin, P. Riviere, and A. Souani, “Contributions of diatomic molecular electronic systems to heated air radiation,” J. Quant. Spectrosc. Radiat. Transfer 72, 503–530 (2002).
[CrossRef]

Peyerimhoff, S. D.

R. D. Vivie and S. D. Peyerimhoff, “Theoretical spectroscopy of the NO radical. I. Potential curves and lifetimes of excited states,” J. Chem. Phys. 89, 3028–3043 (1988).
[CrossRef]

Qin, Y. K.

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

Reddy, L. S. S.

R. R. Reddy, Y. N. Ahammed, D. B. Basha, K. Narasimhulu, L. S. S. Reddy, and K. R. Gopal, “Spectroscopic studies of atmospheric interest on NO and NO+,” J. Quant. Spectrosc. Radiat. Transfer 97, 344–353 (2006).
[CrossRef]

Reddy, R. R.

R. R. Reddy, Y. N. Ahammed, D. B. Basha, K. Narasimhulu, L. S. S. Reddy, and K. R. Gopal, “Spectroscopic studies of atmospheric interest on NO and NO+,” J. Quant. Spectrosc. Radiat. Transfer 97, 344–353 (2006).
[CrossRef]

Reisel, J. R.

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0,0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

Riviere, P.

S. Chauveau, M. Y. Perrin, P. Riviere, and A. Souani, “Contributions of diatomic molecular electronic systems to heated air radiation,” J. Quant. Spectrosc. Radiat. Transfer 72, 503–530 (2002).
[CrossRef]

Rytel, M.

J. Danielak, U. Domin, R. Kępa, M. Rytel, and M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+−X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402(1997).
[CrossRef]

Settersten, T. B.

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

Sharma, S. P.

C. S. Park, M. E. Newfield, D. G. Fletcher, T. Gökçen, and S. P. Sharma, “Spectroscopic emission measurements within the blunt-body shock layer in an arcjet flow,” J. Thermophys. Heat Transfer 12, 190–197 (1998).
[CrossRef]

Somesfalean, G.

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

Souani, A.

S. Chauveau, M. Y. Perrin, P. Riviere, and A. Souani, “Contributions of diatomic molecular electronic systems to heated air radiation,” J. Quant. Spectrosc. Radiat. Transfer 72, 503–530 (2002).
[CrossRef]

Spindler, R. J.

R. J. Spindler, L. Isaacson, and T. Wentink, “Franck–Condon factors and r-centroids for the gamma system of NO,” J. Quant. Spectrosc. Radiat. Transfer 10621–628 (1970).
[CrossRef]

Stevens, R.

R. Stevens, P. Ewart, H. Ma, and C. R. Stone, “Measurement of nitric oxide concentration in a spark-ignition engine using degenerate four-wave mixing,” Combust. Flame 148, 223–233 (2007).
[CrossRef]

Stone, C. R.

R. Stevens, P. Ewart, H. Ma, and C. R. Stone, “Measurement of nitric oxide concentration in a spark-ignition engine using degenerate four-wave mixing,” Combust. Flame 148, 223–233 (2007).
[CrossRef]

Teramoto, Y.

R. Ono, Y. Teramoto, and T. Oda, “Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge,” Plasma Sources Sci. Technol. 19, 015009 (2010).
[CrossRef]

Trad, H.

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, and C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0,0) and γ(1,0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

Vivie, R. D.

R. D. Vivie and S. D. Peyerimhoff, “Theoretical spectroscopy of the NO radical. I. Potential curves and lifetimes of excited states,” J. Chem. Phys. 89, 3028–3043 (1988).
[CrossRef]

Wang, H. S.

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

Wang, Z. Y.

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

Wentink, T.

R. J. Spindler, L. Isaacson, and T. Wentink, “Franck–Condon factors and r-centroids for the gamma system of NO,” J. Quant. Spectrosc. Radiat. Transfer 10621–628 (1970).
[CrossRef]

Winchester, M. R.

M. R. Winchester and R. K. Marcus, “Investigations of self-absorption in a radio-frequency glow discharge device,” Spectrochim. Acta B 51, 839–850 (1996).
[CrossRef]

Wu, S. H.

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

Yang, H. M.

W. F. Lin, B. Zhang, W. H. Hou, D. W. Li, and H. M. Yang, “Characteristics of emissive spectrum and the removal of nitric oxide in N2/O2/NO plasma with argon additive,” J. Environ. Sci. (China) 21, 790–794 (2009).
[CrossRef]

Yang, Q.-S.

Z.-M. Peng, Y.-J. Ding, Q.-S. Yang, and Z.-L. Jiang, “Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas,” Acta Phys. Sin. 60, 053302 (2011) (in Chinese; English summary).

Z.-M. Peng, Y.-J. Ding, X.-D. Zhai, Q.-S. Yang, and Z.-L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Zachwieja, M.

J. Danielak, U. Domin, R. Kępa, M. Rytel, and M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+−X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402(1997).
[CrossRef]

Zhai, X.-D.

Z.-M. Peng, Y.-J. Ding, X.-D. Zhai, Q.-S. Yang, and Z.-L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Zhang, B.

W. F. Lin, B. Zhang, W. H. Hou, D. W. Li, and H. M. Yang, “Characteristics of emissive spectrum and the removal of nitric oxide in N2/O2/NO plasma with argon additive,” J. Environ. Sci. (China) 21, 790–794 (2009).
[CrossRef]

Zhang, Y. G.

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

Zhang, Z. G.

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

Zubek, M.

R. Olszewski and M. Zubek, “A study of electron impact excitation of the A2Σ+ state of nitric oxide in the near-threshold energy range,” Chem. Phys. Lett. 340, 249–255 (2001).
[CrossRef]

Acta Phys. Sin. (1)

Z.-M. Peng, Y.-J. Ding, Q.-S. Yang, and Z.-L. Jiang, “Emission spectra of OH radical (A2Σ+→X2Πr) and its application on high temperature gas,” Acta Phys. Sin. 60, 053302 (2011) (in Chinese; English summary).

Atmos. Environ. (1)

Y. G. Zhang, H. S. Wang, G. Somesfalean, Z. Y. Wang, X. T. Lou, S. H. Wu, Z. G. Zhang, and Y. K. Qin, “Broadband UV spectroscopy system used for monitoring of SO2 and NO emissions from thermal power plants,” Atmos. Environ. 44, 4266–4271 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

R. Olszewski and M. Zubek, “A study of electron impact excitation of the A2Σ+ state of nitric oxide in the near-threshold energy range,” Chem. Phys. Lett. 340, 249–255 (2001).
[CrossRef]

Chin. Phys. Lett. (1)

Z.-M. Peng, Y.-J. Ding, X.-D. Zhai, Q.-S. Yang, and Z.-L. Jiang, “Spectral characteristics of CN radical (B→X) and its application in determination of rotational and vibrational temperatures of plasma,” Chin. Phys. Lett. 28, 044703 (2011).
[CrossRef]

Combust. Flame (2)

C. S. Cooper and N. M. Laurendeau, “Quantitative measurements of nitric oxide in high-pressure (2–5 atm), swirl-stabilized spray flames via laser-induced fluorescence,” Combust. Flame 123, 175–188 (2000).
[CrossRef]

R. Stevens, P. Ewart, H. Ma, and C. R. Stone, “Measurement of nitric oxide concentration in a spark-ignition engine using degenerate four-wave mixing,” Combust. Flame 148, 223–233 (2007).
[CrossRef]

Int. J. Thermophys. (1)

A. Fateev and S. Clausen, “In situ gas temperature measurements by UV-absorption spectroscopy,” Int. J. Thermophys. 30, 265–275 (2009).
[CrossRef]

J. Chem. Phys. (3)

J. Luque and D. R. Crosley, “Transition probabilities and electronic transition moments of the A2Σ+−X2Π and D2Σ+−X2Π systems of nitric oxide,” J. Chem. Phys. 111, 7405–7415 (1999).
[CrossRef]

T. B. Settersten, B. D. Patterson, and W. H. Humphries, “Radiative lifetimes of NO A2Σ+ (v′=0,1,2) and the electronic transition moment of the A2Σ+−X2Π system,” J. Chem. Phys. 131, 104309 (2009).
[CrossRef]

R. D. Vivie and S. D. Peyerimhoff, “Theoretical spectroscopy of the NO radical. I. Potential curves and lifetimes of excited states,” J. Chem. Phys. 89, 3028–3043 (1988).
[CrossRef]

J. Environ. Sci. (China) (1)

W. F. Lin, B. Zhang, W. H. Hou, D. W. Li, and H. M. Yang, “Characteristics of emissive spectrum and the removal of nitric oxide in N2/O2/NO plasma with argon additive,” J. Environ. Sci. (China) 21, 790–794 (2009).
[CrossRef]

J. Mol. Spectrosc. (1)

J. Danielak, U. Domin, R. Kępa, M. Rytel, and M. Zachwieja, “Reinvestigation of the emission γ band system (A2Σ+−X2Π) of the NO molecule,” J. Mol. Spectrosc. 181, 394–402(1997).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (8)

P. H. Paul, “Calculation of transition frequencies and rotational line strengths in the γ-bands of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 57, 581–589 (1997).
[CrossRef]

J. R. Reisel, C. D. Carter, and N. M. Laurendeau, “Einstein coefficients for rotational lines of the (0,0) band of the NO A2Σ+−X2Π system,” J. Quant. Spectrosc. Radiat. Transfer 47, 43–54 (1992).
[CrossRef]

R. R. Reddy, Y. N. Ahammed, D. B. Basha, K. Narasimhulu, L. S. S. Reddy, and K. R. Gopal, “Spectroscopic studies of atmospheric interest on NO and NO+,” J. Quant. Spectrosc. Radiat. Transfer 97, 344–353 (2006).
[CrossRef]

R. J. Spindler, L. Isaacson, and T. Wentink, “Franck–Condon factors and r-centroids for the gamma system of NO,” J. Quant. Spectrosc. Radiat. Transfer 10621–628 (1970).
[CrossRef]

H. Trad, P. Higelin, N. Djebaïli-Chaumeix, and C. Mounaim-Rousselle, “Experimental study and calculations of nitric oxide absorption in the γ(0,0) and γ(1,0) bands for strong temperature conditions,” J. Quant. Spectrosc. Radiat. Transfer 90, 275–289 (2005).
[CrossRef]

L. Leštinská, V. Martišovitš, and Z. Machala, “Corona discharge as a temperature probe of atmospheric air microwave plasma jet,” J. Quant. Spectrosc. Radiat. Transfer 112, 2779–2786 (2011).
[CrossRef]

S. Chauveau, M. Y. Perrin, P. Riviere, and A. Souani, “Contributions of diatomic molecular electronic systems to heated air radiation,” J. Quant. Spectrosc. Radiat. Transfer 72, 503–530 (2002).
[CrossRef]

A. J. D. Farmer, V. Hasson, and R. W. Nicholls, “Absolute oscillator strength measurements of the (υ′′=0, υ′=0−3) bands of the (A2Σ−X2Π) γ-system of nitric oxide,” J. Quant. Spectrosc. Radiat. Transfer 12, 627–633 (1972).
[CrossRef]

J. Thermophys. Heat Transfer (1)

C. S. Park, M. E. Newfield, D. G. Fletcher, T. Gökçen, and S. P. Sharma, “Spectroscopic emission measurements within the blunt-body shock layer in an arcjet flow,” J. Thermophys. Heat Transfer 12, 190–197 (1998).
[CrossRef]

Plasma Sources Sci. Technol. (1)

R. Ono, Y. Teramoto, and T. Oda, “Effect of humidity on gas temperature in the afterglow of pulsed positive corona discharge,” Plasma Sources Sci. Technol. 19, 015009 (2010).
[CrossRef]

Spectrochim. Acta B (1)

M. R. Winchester and R. K. Marcus, “Investigations of self-absorption in a radio-frequency glow discharge device,” Spectrochim. Acta B 51, 839–850 (1996).
[CrossRef]

Other (2)

C. O. Laux, R. J. Gessman, and C. H. Kruger, “Modeling the UV and VUV radiative emission of high-temperature air,” in AIAA 28th Thermophysics Conference (American Institute of Aeronautics and Astronautics, 1993), paper 93–2802.

J. Luque and D. R. Crosley, “LIFBASE: database and spectral simulation for diatomic molecules,” http://www.sri.com/psd/lifbase/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the optical data acquisition system.

Fig. 2.
Fig. 2.

Comparison of spectra with and without self-absorption.

Fig. 3.
Fig. 3.

Relationship between the branching ratio and NO concentrations for various (a) α and (b) K.

Fig. 4.
Fig. 4.

Spectra for different NO concentrations.

Fig. 5.
Fig. 5.

Pair of peak areas used for comparison.

Fig. 6.
Fig. 6.

Experimental data and correlations for optical path lengths (a) L=10cm and (b) L=15cm.

Fig. 7.
Fig. 7.

Comparisons of the measured and predicted spectra at different NO concentrations.

Fig. 8.
Fig. 8.

Experimental data and correlations in N2 and He mixtures.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

IvJ=NvJAvJvJhcvvJvJ,
IvJ/IvJ=exp[(σNvJL)α],
σ=πe2mc2fabsSvJvJ2J+1,
NvJ=N0Qr(2J+1)exp[Er(J)kTr],
IvJ/IvJ=exp[(KvJN0L)α],
ln(IA/IB)=ln(IA,0/IB,0)+KN0α.

Metrics