Abstract

The characteristics of Ag+ diffusion during field assisted fabrication of a channel waveguide in glass substrates are analyzed using a numerical model. Differences between the results of the author’s original model and the other typically used models are discussed. Experimental conditions have been chosen to clearly demonstrate the essential features of Ag+ concentration contours, particularly near the mask edges. Metallic and dielectric masks have been used in the experiment, and the results are similar for both mask materials. The shapes of Ag+ concentration contours reveal the presence of a thin polarized layer under the mask and seem to be consistent with the results predicted by the proposed numerical model. Some modifications of the model are suggested for a better fit of the numerical to the experimental results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 71107 (2011).
    [CrossRef]
  2. B. West, “Ion-exchanged glass waveguides” in The Handbook of Photonics, 2nd ed., M. C. Gupta and J. Ballato, eds. (CRC Press, 2007), pp. 13.1–13.35.
  3. S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).
  4. P. Mrozek, “Numerical modeling of field-assisted ion-exchanged channel waveguides by the explicit consideration of space-charge buildup,” Appl. Opt. 50, 4499–4508 (2011).
    [CrossRef]
  5. B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, “Modeling of ion-exchanged glass waveguide structures,” J. Non-Cryst. Solids 347, 18–26 (2004).
    [CrossRef]
  6. J. Albert and J. W. Y. Lit, “Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides,” Appl. Opt. 29, 2798–2804 (1990).
    [CrossRef]
  7. A. Tervonen, “A general model for fabrication processes of channel waveguides by ion exchange,” J. Appl. Phys. 67, 2746–2752 (1990).
    [CrossRef]
  8. A. Tervonen, S. Honkanen, and M. Leppihalme, “Control of ion-exchanged waveguide profiles with Ag thin-film sources,” J. Appl. Phys. 62, 759–763 (1987).
    [CrossRef]
  9. H.-J. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
    [CrossRef]
  10. P. Mrozek, E. Mrozek, and T. Lukaszewicz, “Determination of refractive index profiles of Ag+─Na+ ion-exchange multimode strip waveguides by variable wavefront shear double-refracting interferometry microinterferometry,” Appl. Opt. 45, 756–763 (2006).
    [CrossRef]
  11. M. Pluta, Advanced Light Microscopy, Vol. 3 of Measuring Techniques (PWN—Polish Scientific Publishers, 1993).
  12. P. Mrozek, E. Mrozek, and T. Lukaszewicz, “Side diffusion modeling by the explicit consideration of a space charge buildup under the mask during a strip waveguide formation in Ag+─Na+ field-assisted ion exchange process,” Appl. Opt. 45, 619–625 (2006).
    [CrossRef]
  13. K. M. Knowles and A. T. J. van Helvoort, “Anodic bonding,” Int. Mater. Rev. 51, 273–311 (2006).
    [CrossRef]
  14. S. Honkanen and A. Tervonen, “Experimental analysis of Ag+─Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication,” J. Appl. Phys. 63, 634–639 (1988).
    [CrossRef]
  15. G. Wallis, “Direct-current polarization during field-assisted glass-metal sealing,” J. Am. Ceram. Soc. 53, 563–567 (1970).
    [CrossRef]

2011 (2)

2006 (4)

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

K. M. Knowles and A. T. J. van Helvoort, “Anodic bonding,” Int. Mater. Rev. 51, 273–311 (2006).
[CrossRef]

P. Mrozek, E. Mrozek, and T. Lukaszewicz, “Side diffusion modeling by the explicit consideration of a space charge buildup under the mask during a strip waveguide formation in Ag+─Na+ field-assisted ion exchange process,” Appl. Opt. 45, 619–625 (2006).
[CrossRef]

P. Mrozek, E. Mrozek, and T. Lukaszewicz, “Determination of refractive index profiles of Ag+─Na+ ion-exchange multimode strip waveguides by variable wavefront shear double-refracting interferometry microinterferometry,” Appl. Opt. 45, 756–763 (2006).
[CrossRef]

2004 (1)

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, “Modeling of ion-exchanged glass waveguide structures,” J. Non-Cryst. Solids 347, 18–26 (2004).
[CrossRef]

1990 (2)

A. Tervonen, “A general model for fabrication processes of channel waveguides by ion exchange,” J. Appl. Phys. 67, 2746–2752 (1990).
[CrossRef]

J. Albert and J. W. Y. Lit, “Full modeling of field-assisted ion exchange for graded index buried channel optical waveguides,” Appl. Opt. 29, 2798–2804 (1990).
[CrossRef]

1988 (1)

S. Honkanen and A. Tervonen, “Experimental analysis of Ag+─Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication,” J. Appl. Phys. 63, 634–639 (1988).
[CrossRef]

1987 (1)

A. Tervonen, S. Honkanen, and M. Leppihalme, “Control of ion-exchanged waveguide profiles with Ag thin-film sources,” J. Appl. Phys. 62, 759–763 (1987).
[CrossRef]

1982 (1)

H.-J. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

1970 (1)

G. Wallis, “Direct-current polarization during field-assisted glass-metal sealing,” J. Am. Ceram. Soc. 53, 563–567 (1970).
[CrossRef]

Albert, J.

Auxier, J.

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

Carriere, J.

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

Frantz, J.

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

Honkanen, S.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 71107 (2011).
[CrossRef]

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, “Modeling of ion-exchanged glass waveguide structures,” J. Non-Cryst. Solids 347, 18–26 (2004).
[CrossRef]

S. Honkanen and A. Tervonen, “Experimental analysis of Ag+─Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication,” J. Appl. Phys. 63, 634–639 (1988).
[CrossRef]

A. Tervonen, S. Honkanen, and M. Leppihalme, “Control of ion-exchanged waveguide profiles with Ag thin-film sources,” J. Appl. Phys. 62, 759–763 (1987).
[CrossRef]

Knowles, K. M.

K. M. Knowles and A. T. J. van Helvoort, “Anodic bonding,” Int. Mater. Rev. 51, 273–311 (2006).
[CrossRef]

Kostuk, R.

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

Leppihalme, M.

A. Tervonen, S. Honkanen, and M. Leppihalme, “Control of ion-exchanged waveguide profiles with Ag thin-film sources,” J. Appl. Phys. 62, 759–763 (1987).
[CrossRef]

Lilienhof, H.-J.

H.-J. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

Lit, J. W. Y.

Lukaszewicz, T.

Madasamy, P.

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, “Modeling of ion-exchanged glass waveguide structures,” J. Non-Cryst. Solids 347, 18–26 (2004).
[CrossRef]

Morrell, M.

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

Mrozek, E.

Mrozek, P.

Pantschew, B.

H.-J. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

Peyghambarian, N.

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, “Modeling of ion-exchanged glass waveguide structures,” J. Non-Cryst. Solids 347, 18–26 (2004).
[CrossRef]

Pluta, M.

M. Pluta, Advanced Light Microscopy, Vol. 3 of Measuring Techniques (PWN—Polish Scientific Publishers, 1993).

Ritter, D.

H.-J. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

Schulzgen, A.

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

Tervonen, A.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 71107 (2011).
[CrossRef]

A. Tervonen, “A general model for fabrication processes of channel waveguides by ion exchange,” J. Appl. Phys. 67, 2746–2752 (1990).
[CrossRef]

S. Honkanen and A. Tervonen, “Experimental analysis of Ag+─Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication,” J. Appl. Phys. 63, 634–639 (1988).
[CrossRef]

A. Tervonen, S. Honkanen, and M. Leppihalme, “Control of ion-exchanged waveguide profiles with Ag thin-film sources,” J. Appl. Phys. 62, 759–763 (1987).
[CrossRef]

van Helvoort, A. T. J.

K. M. Knowles and A. T. J. van Helvoort, “Anodic bonding,” Int. Mater. Rev. 51, 273–311 (2006).
[CrossRef]

Voges, E.

H.-J. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

Wallis, G.

G. Wallis, “Direct-current polarization during field-assisted glass-metal sealing,” J. Am. Ceram. Soc. 53, 563–567 (1970).
[CrossRef]

West, B.

B. West, “Ion-exchanged glass waveguides” in The Handbook of Photonics, 2nd ed., M. C. Gupta and J. Ballato, eds. (CRC Press, 2007), pp. 13.1–13.35.

West, B. R.

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 71107 (2011).
[CrossRef]

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, “Modeling of ion-exchanged glass waveguide structures,” J. Non-Cryst. Solids 347, 18–26 (2004).
[CrossRef]

Yliniemi, S.

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

H.-J. Lilienhof, E. Voges, D. Ritter, and B. Pantschew, “Field-induced index profiles of multimode ion-exchanged strip waveguides,” IEEE J. Quantum Electron. QE-18, 1877–1883 (1982).
[CrossRef]

Int. Mater. Rev. (1)

K. M. Knowles and A. T. J. van Helvoort, “Anodic bonding,” Int. Mater. Rev. 51, 273–311 (2006).
[CrossRef]

J. Am. Ceram. Soc. (1)

G. Wallis, “Direct-current polarization during field-assisted glass-metal sealing,” J. Am. Ceram. Soc. 53, 563–567 (1970).
[CrossRef]

J. Appl. Phys. (3)

S. Honkanen and A. Tervonen, “Experimental analysis of Ag+─Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication,” J. Appl. Phys. 63, 634–639 (1988).
[CrossRef]

A. Tervonen, “A general model for fabrication processes of channel waveguides by ion exchange,” J. Appl. Phys. 67, 2746–2752 (1990).
[CrossRef]

A. Tervonen, S. Honkanen, and M. Leppihalme, “Control of ion-exchanged waveguide profiles with Ag thin-film sources,” J. Appl. Phys. 62, 759–763 (1987).
[CrossRef]

J. Non-Cryst. Solids (1)

B. R. West, P. Madasamy, N. Peyghambarian, and S. Honkanen, “Modeling of ion-exchanged glass waveguide structures,” J. Non-Cryst. Solids 347, 18–26 (2004).
[CrossRef]

Opt. Eng. (1)

A. Tervonen, B. R. West, and S. Honkanen, “Ion-exchanged glass waveguide technology: a review,” Opt. Eng. 50, 71107 (2011).
[CrossRef]

Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B (1)

S. Honkanen, B. R. West, S. Yliniemi, P. Madasamy, M. Morrell, J. Auxier, A. Schulzgen, N. Peyghambarian, J. Carriere, J. Frantz, and R. Kostuk, “Recent advances in ion exchanged glass waveguides and devices,” Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 47, 110–120 (2006).

Other (2)

B. West, “Ion-exchanged glass waveguides” in The Handbook of Photonics, 2nd ed., M. C. Gupta and J. Ballato, eds. (CRC Press, 2007), pp. 13.1–13.35.

M. Pluta, Advanced Light Microscopy, Vol. 3 of Measuring Techniques (PWN—Polish Scientific Publishers, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Field-assisted Ag+Na+ ion exchange process.

Fig. 2.
Fig. 2.

Ag concentration contour lines, in the direction to the inside of glass: 0.8CAgmax, 0.6CAgmax, 0.4CAgmax, 0.2CAgmax, 0.05CAgmax (CAgmax is the maximum Ag concentration); numerical simulation results of field-assisted waveguide formation for electric potential φ boundary conditions (Table 1) using (a) Laplace equation; (b) Poisson equation, at exemplary process parameters: voltage U=20V, time t=300s, temperature T=628K.

Fig. 3.
Fig. 3.

Close-up view of Ag concentration contours in 5 μm deep region under the mask edge for the simulations presented in Figs. 1(a) and 1(b), respectively.

Fig. 4.
Fig. 4.

Electric potential φ boundary conditions at glass surface and isopotential lines of φ decreased by (a) 0.5 V step and (b) 0.1 V step in a close-up view of the region under the mask edge for the simulations presented in Figs. 1(a) and 1(b), respectively; arrow in (a) and (b) indicates a local gradient of φ, and hence the direction of Ag+ ions drift in electric field under mask edge.

Fig. 5.
Fig. 5.

A schematic representation of UFI split images 1 and 2 of cross section of a strip waveguide; intersection of wavefronts of images 1 and 2 at high value of δmax (a) resulting in a narrow zero order interference fringe (b); intersection of wavefronts of images 1 and 2 at low value of δmax (c) resulting in a wide zero order interference fringe (d); wavefront gradient at intersection point S indicated by a slope of a dotted line tangent to the object wavefront at point S, v is a direction of light illumination.

Fig. 6.
Fig. 6.

FFI split image of cross section of a strip waveguide in (a) white and (b) monochromatic light illumination; in (a) the left arrow and the right arrow point at zero order fringe in empty and object field, respectively; in (b) a is maximum distortion of zero order fringe, and b is the interfringe spacing for wavelength λ=550nm.

Fig. 7.
Fig. 7.

UFI split images of cross sections of strip waveguides in white light illumination; waveguides fabricated using (a) Al mask with 35 μm aperture; (b) dielectric mask with 35 μm aperture; (c) Al mask with 65 μm aperture, and (d) dielectric mask with 50 μm aperture; arrows point at dark zero order fringes indicating contours of 90% of CAgmax; d is the thickness of a polarized layer.

Fig. 8.
Fig. 8.

Ag concentration contour lines, in the direction to the inside of glass: 0.8CAgmax, 0.6CAgmax, 0.4CAgmax, 0.2CAgmax, 0.05CAgmax; numerical simulation results of field-assisted waveguide formation for (a) 100 s; (b) 300 s; (c) 600 s and experimental results (d) for 600 s; only a half of each symmetrical contour is shown for clarity’s sake.

Tables (1)

Tables Icon

Table 1. Boundary Conditions on Electric Potential φ Used in Electric Field E¯ Modeling by Solving Laplace or Poisson Equation

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ct=D1(1M)c[2c+(1M)(c)21(1M)cqE¯ext·ckT],
qE¯extkT=j¯ec0D0[1(1M)c],
CAg(Na)t=DAg(Na)2CAg(Na)μAg(Na)(CAg(Na)·E¯+E¯·CAg(Na)),
2φ=ρεrε0,
ρ0=(CAg+CNaC0_Na)F,
ρ=mρ0.
δmax=Δnmaxh.
δmax=(a/b)λ.
C0_Ag=C0_Na=5280mol/m3,
DNa=0.6×1014m2/s,

Metrics