Abstract

In this study, an integrated gray-level gradient method is applied to extract the three-dimensional (3D) velocity fields of sprays. This method consists of a conventional edge-sharpness method and a new method, namely, the overall-sharpness method, which is an efficient supplement of the former. And then the synchronization system is designed and assembled to record double-exposure spray holograms in a short time interval. Finally, using the integrated gray-level gradient method and some image processing techniques, the 3D coordinates of droplets are easily obtained, which can be used to evaluate the 3D velocity fields and the size features of spray droplets in different spray injection pressures. It proves that the integrated gray-level gradient method is well applied to measure the characteristics of sprays in in-line digital holography.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
    [Crossref]
  2. A. E. Shortt, T. J. Naughton, and B. Javidi, “Compression of digital holograms of three-dimensional objects using wavelets,” Opt. Express 14, 2625–2630 (2006).
    [Crossref]
  3. E. Darakis and J. J. Soraghan, “Reconstruction domain compression of phase-shifting digital holograms,” Appl. Opt. 46, 351–356 (2007).
    [Crossref]
  4. M. L. Lluís and J. Bahram, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16, 161–169 (2008).
    [Crossref]
  5. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1, 589–636 (2009).
    [Crossref]
  6. C. S. Vikram, “Introduction to holography,” in Particle Field Holography (Cambridge University, 1992), pp. 6–16.
  7. Y. Yang and B. S. Kang, “Application of digital holography to sprays,” in Proceedings of Asia Display (East China Normal University, 2007), Vol. 1, pp. 2050–2054.
  8. Y. Yang and B. S. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Technol. 23, 1670–1679 (2009).
    [Crossref]
  9. T. Kim, T. C. Poon, and G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
    [Crossref]
  10. T. Kim and T. C. Poon, “Three-dimensional matching by use of phase-only holographic information and the Wigner distribution,” J. Opt. Soc. Am. 17, 2520–2528 (2000).
    [Crossref]
  11. V. Ilchenko, T. Lex, and T. Sattlemayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE 5851, 123–128 (2005).
    [Crossref]
  12. K. U. Koh, J. Y. Kim, and S. Y. Lee, “Determination of in-focus criteria and depth of field in image processing of spray particles,” Atomization Sprays 11, 317–333 (2001).
  13. K. S. Kim and S. S. Kim, “Drop sizing and depth-of-field correction in TV imaging,” Atomization Sprays 4, 65–78 (1994).
  14. Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824(2008).
    [Crossref]
  15. Yang Yan and B. S. Kang, “Numerical simulation of in-line digital holograms,” in Proceedings of Asia Display 2007, H. S. Kwok, ed. (East China Normal University, 2007), pp. 2055–2059.
  16. U. Schnars and W. Jueptner, “Digital Holography,” in Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005), pp. 41–45.
  17. S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23–32 (1996).
    [Crossref]

2009 (2)

A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Adv. Opt. Photon. 1, 589–636 (2009).
[Crossref]

Y. Yang and B. S. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Technol. 23, 1670–1679 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (1)

2005 (1)

V. Ilchenko, T. Lex, and T. Sattlemayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE 5851, 123–128 (2005).
[Crossref]

2002 (2)

U. Schnars and W. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

T. Kim, T. C. Poon, and G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[Crossref]

2001 (1)

K. U. Koh, J. Y. Kim, and S. Y. Lee, “Determination of in-focus criteria and depth of field in image processing of spray particles,” Atomization Sprays 11, 317–333 (2001).

2000 (1)

T. Kim and T. C. Poon, “Three-dimensional matching by use of phase-only holographic information and the Wigner distribution,” J. Opt. Soc. Am. 17, 2520–2528 (2000).
[Crossref]

1996 (1)

S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23–32 (1996).
[Crossref]

1994 (1)

K. S. Kim and S. S. Kim, “Drop sizing and depth-of-field correction in TV imaging,” Atomization Sprays 4, 65–78 (1994).

Alfalou, A.

Baek, S. J.

S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23–32 (1996).
[Crossref]

Bahram, J.

Brosseau, C.

Choo, Y. J.

Darakis, E.

Ilchenko, V.

V. Ilchenko, T. Lex, and T. Sattlemayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE 5851, 123–128 (2005).
[Crossref]

Indebetouw, G.

T. Kim, T. C. Poon, and G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[Crossref]

Javidi, B.

Jueptner, W.

U. Schnars and W. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

U. Schnars and W. Jueptner, “Digital Holography,” in Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005), pp. 41–45.

Kang, B. S.

Y. Yang and B. S. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Technol. 23, 1670–1679 (2009).
[Crossref]

Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824(2008).
[Crossref]

Yang Yan and B. S. Kang, “Numerical simulation of in-line digital holograms,” in Proceedings of Asia Display 2007, H. S. Kwok, ed. (East China Normal University, 2007), pp. 2055–2059.

Y. Yang and B. S. Kang, “Application of digital holography to sprays,” in Proceedings of Asia Display (East China Normal University, 2007), Vol. 1, pp. 2050–2054.

Kim, J. Y.

K. U. Koh, J. Y. Kim, and S. Y. Lee, “Determination of in-focus criteria and depth of field in image processing of spray particles,” Atomization Sprays 11, 317–333 (2001).

Kim, K. S.

K. S. Kim and S. S. Kim, “Drop sizing and depth-of-field correction in TV imaging,” Atomization Sprays 4, 65–78 (1994).

Kim, S. S.

K. S. Kim and S. S. Kim, “Drop sizing and depth-of-field correction in TV imaging,” Atomization Sprays 4, 65–78 (1994).

Kim, T.

T. Kim, T. C. Poon, and G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[Crossref]

T. Kim and T. C. Poon, “Three-dimensional matching by use of phase-only holographic information and the Wigner distribution,” J. Opt. Soc. Am. 17, 2520–2528 (2000).
[Crossref]

Koh, K. U.

K. U. Koh, J. Y. Kim, and S. Y. Lee, “Determination of in-focus criteria and depth of field in image processing of spray particles,” Atomization Sprays 11, 317–333 (2001).

Lee, S. J.

S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23–32 (1996).
[Crossref]

Lee, S. Y.

K. U. Koh, J. Y. Kim, and S. Y. Lee, “Determination of in-focus criteria and depth of field in image processing of spray particles,” Atomization Sprays 11, 317–333 (2001).

Lex, T.

V. Ilchenko, T. Lex, and T. Sattlemayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE 5851, 123–128 (2005).
[Crossref]

Lluís, M. L.

Naughton, T. J.

Poon, T. C.

T. Kim, T. C. Poon, and G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[Crossref]

T. Kim and T. C. Poon, “Three-dimensional matching by use of phase-only holographic information and the Wigner distribution,” J. Opt. Soc. Am. 17, 2520–2528 (2000).
[Crossref]

Sattlemayer, T.

V. Ilchenko, T. Lex, and T. Sattlemayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE 5851, 123–128 (2005).
[Crossref]

Schnars, U.

U. Schnars and W. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

U. Schnars and W. Jueptner, “Digital Holography,” in Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005), pp. 41–45.

Shortt, A. E.

Soraghan, J. J.

Vikram, C. S.

C. S. Vikram, “Introduction to holography,” in Particle Field Holography (Cambridge University, 1992), pp. 6–16.

Yan, Yang

Yang Yan and B. S. Kang, “Numerical simulation of in-line digital holograms,” in Proceedings of Asia Display 2007, H. S. Kwok, ed. (East China Normal University, 2007), pp. 2055–2059.

Yang, Y.

Y. Yang and B. S. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Technol. 23, 1670–1679 (2009).
[Crossref]

Y. Yang, B. S. Kang, and Y. J. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824(2008).
[Crossref]

Y. Yang and B. S. Kang, “Application of digital holography to sprays,” in Proceedings of Asia Display (East China Normal University, 2007), Vol. 1, pp. 2050–2054.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Atomization Sprays (2)

K. U. Koh, J. Y. Kim, and S. Y. Lee, “Determination of in-focus criteria and depth of field in image processing of spray particles,” Atomization Sprays 11, 317–333 (2001).

K. S. Kim and S. S. Kim, “Drop sizing and depth-of-field correction in TV imaging,” Atomization Sprays 4, 65–78 (1994).

Exp. Fluids (1)

S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23–32 (1996).
[Crossref]

J. Mech. Sci. Technol. (1)

Y. Yang and B. S. Kang, “Measurements of the characteristics of spray droplets using in-line digital particle holography,” J. Mech. Sci. Technol. 23, 1670–1679 (2009).
[Crossref]

J. Opt. Soc. Am. (1)

T. Kim and T. C. Poon, “Three-dimensional matching by use of phase-only holographic information and the Wigner distribution,” J. Opt. Soc. Am. 17, 2520–2528 (2000).
[Crossref]

Meas. Sci. Technol. (1)

U. Schnars and W. Jueptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85–R101 (2002).
[Crossref]

Opt. Eng. (1)

T. Kim, T. C. Poon, and G. Indebetouw, “Depth detection and image recovery in remote sensing by optical scanning holography,” Opt. Eng. 41, 1331–1338 (2002).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

V. Ilchenko, T. Lex, and T. Sattlemayer, “Depth position detection of the particles in digital holographic particle image velocimetry (DHPIV),” Proc. SPIE 5851, 123–128 (2005).
[Crossref]

Other (4)

Yang Yan and B. S. Kang, “Numerical simulation of in-line digital holograms,” in Proceedings of Asia Display 2007, H. S. Kwok, ed. (East China Normal University, 2007), pp. 2055–2059.

U. Schnars and W. Jueptner, “Digital Holography,” in Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005), pp. 41–45.

C. S. Vikram, “Introduction to holography,” in Particle Field Holography (Cambridge University, 1992), pp. 6–16.

Y. Yang and B. S. Kang, “Application of digital holography to sprays,” in Proceedings of Asia Display (East China Normal University, 2007), Vol. 1, pp. 2050–2054.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1.
Fig. 1.

Optical setup of in-line digital holography.

Fig. 2.
Fig. 2.

Coordinate system.

Fig. 3.
Fig. 3.

Defocusing patterns of the particle.

Fig. 4.
Fig. 4.

Gray-level intensity profiles of the particle.

Fig. 5.
Fig. 5.

Binary images of particle reconstructed at different object distances.

Fig. 6.
Fig. 6.

Reconstruction image of particle. White, background; dark gray, particle boundary; gray, particle’s internal region.

Fig. 7.
Fig. 7.

Influences of particle diameter and object distance on the Es. (a) Different particle size at same object distance; (b) same particle at different object distance.

Fig. 8.
Fig. 8.

Influences of particle diameter and object distance on determination of focal plane using the Os method. (a) Different particle size at same object distance; (b) same particle at different object distance.

Fig. 9.
Fig. 9.

Errors of focal plane determination of the particle using different methods (diameter D=66.6μm).

Fig. 10.
Fig. 10.

Errors of focal plane determination of the particle using different methods (the object distance d=150mm).

Fig. 11.
Fig. 11.

Flow chart of the program for focal plane determination of particle.

Fig. 12.
Fig. 12.

Experimental setup for in-line digital holography.

Fig. 13.
Fig. 13.

Calibration target: (a) sketch of calibration target, (b) calibration target, (c) hologram.

Fig. 14.
Fig. 14.

Curves of focal plane determination using the integrated gray-level gradient method.

Fig. 15.
Fig. 15.

Reconstruction image of calibration target at 197.131 mm: (a) reconstruction image, (b) magnified image.

Fig. 16.
Fig. 16.

Experimental setup for recording double exposure holograms of sprays.

Fig. 17.
Fig. 17.

Control diagram of synchronization system.

Fig. 18.
Fig. 18.

Spray holograms (a) at first exposure, (b) at second exposure.

Fig. 19.
Fig. 19.

Spatial velocities of spray droplets in the spray injection pressure, 9.8 kPa. Velocities in (a) x direction, (b) y direction, (c) z direction, and (d) velocity vectors.

Fig. 20.
Fig. 20.

Spatial velocities of spray droplets in the spray injection pressure, 14.7 kPa. Velocities in (a) x direction, (b) y direction, (c) z direction, and (d) velocity vectors.

Fig. 21.
Fig. 21.

Spatial velocities of spray droplets in the spray injection pressure, 19.6 kPa. Velocities in (a) x direction, (b) y direction, (c) z direction, and (d) velocity vectors.

Fig. 22.
Fig. 22.

Spatial velocities of spray droplets in the spray injection pressure, 29.4 kPa. Velocities in (a) x direction, (b) y direction, (c) z direction, and (d) velocity vectors.

Fig. 23.
Fig. 23.

Distributions of droplet size in different spray injection pressures. (a) 9.8 kPa, (b) 14.7 kPa, (c) 19.6 kPa, and (d) 29.4 kPa.

Tables (5)

Tables Icon

Table 1. Errors of Focal Plane for Different Particles at Different Object Distances with Edge Sharpness (Es)

Tables Icon

Table 2. Errors of Focal Plane Determination of Different Particles at Different Object Distances Using the Overall-Sharpness Method

Tables Icon

Table 3. Applicable Conditions of the Integrated Gray-Level Gradient Methoda

Tables Icon

Table 4. Errors of Focal Plane Determination for Different Dot Sizes

Tables Icon

Table 5. Errors of Focal Plane Determination of Calibration Target Using Different Methods

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R(ξ,η)=iλh(x,y)ER(x,y)exp(i2πλρ)ρdxdy,
ρ=(ξx)2+(ηy)2+d2.
R(ξ,η)=F1{F[h(x,y)]·F[iλexp[i2πλd2+(xξ)2+(yη)2]d2+(xξ)2+(yη)2]},
h(x,y)=iλO(ξ,η)ER(ξ,η)exp(i2πλρ)ρdξdη.
h(x,y)=O(ξ,η)g(ξ,η,x,y)dξdη,
g(ξ,η,x,y)=iλexp[i2πλd2+(ξx)2+(ηy)2]d2+(ξx)2+(ηy)2.
h(x,y)=F1{F[O(ξ,η)]·F[iλexp[i2πλd2+(ξx)2+(ηy)2]d2+(ξx)2+(ηy)2]}.
Es=1N1iN1F1i(x,y)1N2iN2F2i(x,y),
VC=GLBGOMGLB.
Os=1N1iN1F1i(x,y)1N2+N3[iN2F2i(x,y)+iN3F3i(x,y)].
Center(x,y)=(1Nk=1Nxk,1Nk=1Nyk).

Metrics