Abstract

We perform characterization of thin films and reverse engineering of multilayer coatings on the basis of multiangle spectral photometric data provided by a new advanced spectrophotometer accessory. Experimental samples of single thin films and multilayer coatings are produced by magnetron sputtering and electron-beam evaporation. Reflectance and transmittance data at two polarization states are measured at incidence angles from 7 to 40 deg. We demonstrate that multiangle reflectance and transmittance data provide reliable characterization and reverse-engineering results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Duparre and D. Ristau, “2004 Topical Meeting on Optical Interference Coatings: measurement problem,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2004), paper WD1.
  2. A. Duparre and D. Ristau, “Optical Interference Coatings 2007 measurement problem,” Appl. Opt. 47, C179–C184 (2008).
    [CrossRef]
  3. A. Duparre and D. Ristau, “2010 OSA Topical Meeting on Optical Interference Coatings: measurement problem,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThC1.
  4. A. Tikhonravov, M. Trubetskov, T. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
    [CrossRef]
  5. A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Gunster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
    [CrossRef]
  6. A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com .
  7. A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
    [CrossRef]
  8. J. Woollam, “Ellipsometry, variable angle spectroscopic,” in Wiley Encyclopedia of Electrical and Electronics Engineering, J. Webster, ed. (Wiley, 2000). Supplement 1.
  9. A. V. Tikhonravov, “Design and reverse engineering of optical coatings,” in Optical Interference Coatings (Optical Society of America, 1998) Vol. 9, pp. 300–301.
  10. R. Andrade, E. Birgin, I. Chambouleyron, J. Martinez, and S. Ventura, “Estimation of the thickness and the optical parameters of several stacked thin films using optimization,” Appl. Opt. 47, 5208–5220 (2008).
    [CrossRef]
  11. K. Lamprecht, W. Papousek, and G. Leising, “Problem of ambiguity in the determination of optical constants of thin absorbing films from spectroscopic reflectance and transmittance measurements,” Appl. Opt. 36, 6364–6371 (1997).
    [CrossRef]
  12. D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
    [CrossRef]
  13. S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using high-accuracy spectro-photometric measurements with oblique angles of incidence,” Proc. SPIE 5250, 234–242 (2004).
    [CrossRef]
  14. A. Lamminpää, S. Nevas, F. Manoocheri, and E. Ikonen, “Characterization of thin films based on reflectance and transmittance measurements at oblique angles of incidence,” Appl. Opt. 45, 1392–1396 (2006).
    [CrossRef]
  15. W. V. Goodell, J. K. Coulter, and P. B. Johnson, “Optical constants of Inconel alloy films,” J. Opt. Soc. Am. 63, 185–188 (1973).
    [CrossRef]
  16. W. V. Goodell, J. K. Coulter, and P. B. Johnson, “Derivation of optical constants of metals from thin-film measurements at oblique incidence,” Appl. Opt. 11, 643–651 (1972).
    [CrossRef]
  17. T. Kihara and K. Yokomori, “Simultaneous measurement of the refractive index and thickness of thin films by s-polarized reflectances,” Appl. Opt. 31, 4482–4487 (1992).
    [CrossRef]
  18. V. Pervak, M. Trubetskov, and A. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
    [CrossRef]
  19. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16, 10220–10233 (2008).
    [CrossRef]
  20. P. A. van Nijnatten, “An automated directional reflectance–transmittance analyser for coating analysis,” Thin Solid Films 442, 74–79 (2003).
    [CrossRef]
  21. A. Tikhonravov, M. Trubetskov, and G. DeBell, “On the accuracy of optical thin film parameter determination based on spectrophotometric data,” Proc. SPIE 5188, 190–199 (2003).
    [CrossRef]
  22. H. Kaiser, “Film deposition materials,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 131–153.
  23. V. Pervak, “Recent developments and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61(2011).
    [CrossRef]
  24. M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of HfO2 thin films,” Mater. Sci. Eng. B 118, 127–131 (2005).
    [CrossRef]
  25. M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
    [CrossRef]

2011

2008

2006

A. Lamminpää, S. Nevas, F. Manoocheri, and E. Ikonen, “Characterization of thin films based on reflectance and transmittance measurements at oblique angles of incidence,” Appl. Opt. 45, 1392–1396 (2006).
[CrossRef]

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

2005

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of HfO2 thin films,” Mater. Sci. Eng. B 118, 127–131 (2005).
[CrossRef]

2004

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using high-accuracy spectro-photometric measurements with oblique angles of incidence,” Proc. SPIE 5250, 234–242 (2004).
[CrossRef]

2003

P. A. van Nijnatten, “An automated directional reflectance–transmittance analyser for coating analysis,” Thin Solid Films 442, 74–79 (2003).
[CrossRef]

A. Tikhonravov, M. Trubetskov, and G. DeBell, “On the accuracy of optical thin film parameter determination based on spectrophotometric data,” Proc. SPIE 5188, 190–199 (2003).
[CrossRef]

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Gunster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

1997

1992

1973

1972

Amotchkina, T.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Gunster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

Andrade, R.

Apolonski, A.

Birgin, E.

Bridou, F.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

Chambouleyron, I.

Coulter, J. K.

DeBell, G.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

A. Tikhonravov, M. Trubetskov, and G. DeBell, “On the accuracy of optical thin film parameter determination based on spectrophotometric data,” Proc. SPIE 5188, 190–199 (2003).
[CrossRef]

Duparre, A.

A. Duparre and D. Ristau, “Optical Interference Coatings 2007 measurement problem,” Appl. Opt. 47, C179–C184 (2008).
[CrossRef]

A. Duparre and D. Ristau, “2004 Topical Meeting on Optical Interference Coatings: measurement problem,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2004), paper WD1.

A. Duparre and D. Ristau, “2010 OSA Topical Meeting on Optical Interference Coatings: measurement problem,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThC1.

Durand, O.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of HfO2 thin films,” Mater. Sci. Eng. B 118, 127–131 (2005).
[CrossRef]

Eypert, C.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

Goodell, W. V.

Grilli, M.

Gunster, S.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Gunster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

Ikonen, E.

A. Lamminpää, S. Nevas, F. Manoocheri, and E. Ikonen, “Characterization of thin films based on reflectance and transmittance measurements at oblique angles of incidence,” Appl. Opt. 45, 1392–1396 (2006).
[CrossRef]

S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using high-accuracy spectro-photometric measurements with oblique angles of incidence,” Proc. SPIE 5250, 234–242 (2004).
[CrossRef]

Johnson, P. B.

Justice, J.

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of HfO2 thin films,” Mater. Sci. Eng. B 118, 127–131 (2005).
[CrossRef]

Kaiser, H.

H. Kaiser, “Film deposition materials,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 131–153.

Kihara, T.

Knowles, A.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

Kokarev, M. A.

S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using high-accuracy spectro-photometric measurements with oblique angles of incidence,” Proc. SPIE 5250, 234–242 (2004).
[CrossRef]

Krausz, F.

Lamminpää, A.

Lamprecht, K.

Leising, G.

Manoocheri, F.

A. Lamminpää, S. Nevas, F. Manoocheri, and E. Ikonen, “Characterization of thin films based on reflectance and transmittance measurements at oblique angles of incidence,” Appl. Opt. 45, 1392–1396 (2006).
[CrossRef]

S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using high-accuracy spectro-photometric measurements with oblique angles of incidence,” Proc. SPIE 5250, 234–242 (2004).
[CrossRef]

Martinez, J.

Modreanu, M.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of HfO2 thin films,” Mater. Sci. Eng. B 118, 127–131 (2005).
[CrossRef]

Naudin, C.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

Naumov, S.

Nevas, S.

A. Lamminpää, S. Nevas, F. Manoocheri, and E. Ikonen, “Characterization of thin films based on reflectance and transmittance measurements at oblique angles of incidence,” Appl. Opt. 45, 1392–1396 (2006).
[CrossRef]

S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using high-accuracy spectro-photometric measurements with oblique angles of incidence,” Proc. SPIE 5250, 234–242 (2004).
[CrossRef]

O’Connell, D.

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of HfO2 thin films,” Mater. Sci. Eng. B 118, 127–131 (2005).
[CrossRef]

Papousek, W.

Pervak, V.

Poelman, D.

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
[CrossRef]

Ristau, D.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

A. Duparre and D. Ristau, “Optical Interference Coatings 2007 measurement problem,” Appl. Opt. 47, C179–C184 (2008).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Gunster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

A. Duparre and D. Ristau, “2010 OSA Topical Meeting on Optical Interference Coatings: measurement problem,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThC1.

A. Duparre and D. Ristau, “2004 Topical Meeting on Optical Interference Coatings: measurement problem,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2004), paper WD1.

Sancho-Parramon, J.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of HfO2 thin films,” Mater. Sci. Eng. B 118, 127–131 (2005).
[CrossRef]

Servet, B.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of HfO2 thin films,” Mater. Sci. Eng. B 118, 127–131 (2005).
[CrossRef]

Smet, P.

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
[CrossRef]

Stchakovsky, M.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

Sugita, A.

Sytchkova, A. K.

Teisset, C.

Tikhonravov, A.

A. Tikhonravov, M. Trubetskov, T. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

V. Pervak, M. Trubetskov, and A. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Gunster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Gunster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

A. Tikhonravov, M. Trubetskov, and G. DeBell, “On the accuracy of optical thin film parameter determination based on spectrophotometric data,” Proc. SPIE 5188, 190–199 (2003).
[CrossRef]

Tikhonravov, A. V.

S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using high-accuracy spectro-photometric measurements with oblique angles of incidence,” Proc. SPIE 5250, 234–242 (2004).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

A. V. Tikhonravov, “Design and reverse engineering of optical coatings,” in Optical Interference Coatings (Optical Society of America, 1998) Vol. 9, pp. 300–301.

Trubetskov, M.

V. Pervak, M. Trubetskov, and A. Tikhonravov, “Robust synthesis of dispersive mirrors,” Opt. Express 19, 2371–2380 (2011).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Gunster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

A. Tikhonravov, M. Trubetskov, and G. DeBell, “On the accuracy of optical thin film parameter determination based on spectrophotometric data,” Proc. SPIE 5188, 190–199 (2003).
[CrossRef]

Trubetskov, M. K.

S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using high-accuracy spectro-photometric measurements with oblique angles of incidence,” Proc. SPIE 5250, 234–242 (2004).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

van Nijnatten, P. A.

P. A. van Nijnatten, “An automated directional reflectance–transmittance analyser for coating analysis,” Thin Solid Films 442, 74–79 (2003).
[CrossRef]

Ventura, S.

Woollam, J.

J. Woollam, “Ellipsometry, variable angle spectroscopic,” in Wiley Encyclopedia of Electrical and Electronics Engineering, J. Webster, ed. (Wiley, 2000). Supplement 1.

Yokomori, K.

Appl. Opt.

W. V. Goodell, J. K. Coulter, and P. B. Johnson, “Derivation of optical constants of metals from thin-film measurements at oblique incidence,” Appl. Opt. 11, 643–651 (1972).
[CrossRef]

T. Kihara and K. Yokomori, “Simultaneous measurement of the refractive index and thickness of thin films by s-polarized reflectances,” Appl. Opt. 31, 4482–4487 (1992).
[CrossRef]

K. Lamprecht, W. Papousek, and G. Leising, “Problem of ambiguity in the determination of optical constants of thin absorbing films from spectroscopic reflectance and transmittance measurements,” Appl. Opt. 36, 6364–6371 (1997).
[CrossRef]

R. Andrade, E. Birgin, I. Chambouleyron, J. Martinez, and S. Ventura, “Estimation of the thickness and the optical parameters of several stacked thin films using optimization,” Appl. Opt. 47, 5208–5220 (2008).
[CrossRef]

V. Pervak, “Recent developments and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50, C55–C61(2011).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt. 50, C75–C85 (2011).
[CrossRef]

A. Lamminpää, S. Nevas, F. Manoocheri, and E. Ikonen, “Characterization of thin films based on reflectance and transmittance measurements at oblique angles of incidence,” Appl. Opt. 45, 1392–1396 (2006).
[CrossRef]

A. Duparre and D. Ristau, “Optical Interference Coatings 2007 measurement problem,” Appl. Opt. 47, C179–C184 (2008).
[CrossRef]

Appl. Surface Sci.

M. Modreanu, J. Sancho-Parramon, O. Durand, B. Servet, M. Stchakovsky, C. Eypert, C. Naudin, A. Knowles, and F. Bridou, “Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films,” Appl. Surface Sci. 253, 328–334 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. D

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D 36, 1850–1857 (2003).
[CrossRef]

Mater. Sci. Eng. B

M. Modreanu, J. Sancho-Parramon, D. O’Connell, J. Justice, O. Durand, and B. Servet, “Solid phase crystallisation of HfO2 thin films,” Mater. Sci. Eng. B 118, 127–131 (2005).
[CrossRef]

Opt. Express

Proc. SPIE

A. Tikhonravov, M. Trubetskov, and G. DeBell, “On the accuracy of optical thin film parameter determination based on spectrophotometric data,” Proc. SPIE 5188, 190–199 (2003).
[CrossRef]

S. Nevas, F. Manoocheri, E. Ikonen, A. V. Tikhonravov, M. A. Kokarev, and M. K. Trubetskov, “Optical metrology of thin films using high-accuracy spectro-photometric measurements with oblique angles of incidence,” Proc. SPIE 5250, 234–242 (2004).
[CrossRef]

A. V. Tikhonravov and M. K. Trubetskov, “On-line characterization and reoptimization of optical coatings,” Proc. SPIE 5250, 406–413 (2004).
[CrossRef]

A. Tikhonravov, M. Trubetskov, T. Amotchkina, A. Tikhonravov, D. Ristau, and S. Gunster, “Reliable determination of wavelength dependence of thin film refractive index,” Proc. SPIE 5188, 331–342 (2003).
[CrossRef]

Thin Solid Films

P. A. van Nijnatten, “An automated directional reflectance–transmittance analyser for coating analysis,” Thin Solid Films 442, 74–79 (2003).
[CrossRef]

Other

J. Woollam, “Ellipsometry, variable angle spectroscopic,” in Wiley Encyclopedia of Electrical and Electronics Engineering, J. Webster, ed. (Wiley, 2000). Supplement 1.

A. V. Tikhonravov, “Design and reverse engineering of optical coatings,” in Optical Interference Coatings (Optical Society of America, 1998) Vol. 9, pp. 300–301.

A. V. Tikhonravov and M. K. Trubetskov, OptiLayer thin film software, http://www.optilayer.com .

A. Duparre and D. Ristau, “2004 Topical Meeting on Optical Interference Coatings: measurement problem,” in Optical Interference Coatings, OSA Technical Digest Series (Optical Society of America, 2004), paper WD1.

A. Duparre and D. Ristau, “2010 OSA Topical Meeting on Optical Interference Coatings: measurement problem,” in Optical Interference Coatings, OSA Technical Digest (Optical Society of America, 2010), paper ThC1.

H. Kaiser, “Film deposition materials,” in Optical Interference Coatings, N. Kaiser and H. K. Pulker, eds. (Springer-Verlag, 2003), pp. 131–153.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Schematic of the absolute variable angle reflectance and transmission accessory.

Fig. 2.
Fig. 2.

Estimating errors in measurement data in the s-polarization case: various spectral dependencies correspond to incidence angles of 7°, 10°, 20°, 30°, and 40°.

Fig. 3.
Fig. 3.

Estimating errors in measurement data in the p-polarization case: various spectral dependencies correspond to incidence angles of 7°, 10°, 20°, 30°, and 40°.

Fig. 4.
Fig. 4.

Refractive indices of Ta2O5 found from separate oblique-incidence R and T measurements, for the s- and p-polarization cases. The differences among the 10 presented wavelength dependencies are almost indistinguishable (see the text for detail).

Fig. 5.
Fig. 5.

Refractive indices of SiO2 found using separate oblique-incidence R and T measurements, for the s- and p-polarization cases (see the text for detail).

Fig. 6.
Fig. 6.

Comparison of nominal refractive indices of Ta2O5 and SiO2 found from single layer measurements (solid black curves), corrected refractive indices found from multilayer data (gray curves), and time-calibration refractive indices (dashed curves).

Fig. 7.
Fig. 7.

Initial fittings of measurement R and T data (crosses) by model reflectance and transmittance data (solid curves).

Fig. 8.
Fig. 8.

Fittings of measurement R and T data (crosses) by model reflectance and transmittance data (solid curves) obtained after the first step of the reverse-engineering procedure.

Fig. 9.
Fig. 9.

Relative errors in thicknesses of 15-layer quarter-wave mirror determined from reflectance and transmittance data measured at 7° incidence angle, s-polarization case (black bars) and planned errors in the thicknesses of third, eighth, 14th, and 15th layers (gray bars).

Fig. 10.
Fig. 10.

Fittings of measurement R and T data (crosses) by model reflectance and transmittance data (solid curves) achieved after the second step of reverse-engineering procedure.

Fig. 11.
Fig. 11.

Comparison of errors in layer thicknesses of 15-layer quarter-wave mirror found on the basis of reflectance and transmittance data taken at 7°, 10°, 20°, 30°, and 40°, for the s-polarization case (black bars) and the p-polarization case (empty bars). Gray bars show planned errors in the thicknesses of the third, eighth, 14th, and 15th layers.

Fig. 12.
Fig. 12.

Nominal refractive index wavelength dependence of e-beam evaporated SiO2 film (solid black curve), reference refractive index wavelength dependencies of SiO2 films produced by magnetron sputtering (dashed black curve), and ion-beam sputtering (gray curve).

Fig. 13.
Fig. 13.

Nominal refractive index wavelength dependence of e-beam evaporated HfO2 film (solid black curve), and reference refractive index wavelength dependencies of HfO2 films produced by radio frequency sputtering (gray curve) and ion-beam sputtering (dashed gray curve). The dashed black curve shows the refractive index of thin HfO2 film found from measurement data related to a 12-layer quarter-wave mirror (see the text for details).

Tables (3)

Tables Icon

Table 1. Description of Experimental Samples

Tables Icon

Table 2. Estimated Levels of Error in Measurement Data

Tables Icon

Table 3. Parameters of Ta2O5 and SiO2 Films Found by Using Separate Oblique-Incidence R and T Data

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ(λ)=100%R(λ)T(λ),
DF2=1Lj=1L{[R(nH(λj)+hH,nL(λj)+hL,d1,,dm,λj,θ)R^(λj,θ)]2++[T(nH(λj)+hH,nL(λ)+hL,d1,,dm,λj,θ)T^(λj,θ)]2},
DF2=1Lj=1L{[R(n˜H(λj),n˜L(λj),(1+δ1)d1,,(1+δm)dm,λj,θ)R^(λj,θ)]2+[T(n˜H(λj),n˜L(λj),(1+δ1)d1,,(1+δm)dm,λj,θ)T^(λj,θ)]2}.

Metrics