Abstract

In this paper we present, for the first time to our knowledge, a new pulse shaping technology (modulation schemes for seed laser) used to mitigate pulse narrowing effect and SBS effect in a high energy Er:Yb codoped fiber master oscillator power amplifier system at 1.5 μm to obtain longer pulse duration and higher energy. An average power of over 1.3 W and a pulse energy of over 0.13 mJ were obtained at 10 kHz repetition rate with a pulse duration of 200 ns and near-diffraction-limited beam quality (M2<1.2).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hemmati, M. Wright, and C. Esproles, “High efficiency pulsed laser transmitters for deep space communications,” SPIE Reviews 3932, 188–195 (2000).
  2. A. Biswas, H. Hemmati, and J. R. Lesh, “High data rate laser transmission for free space laser communications,” SPIE Reviews 3615, 269–277 (1999).
  3. R. W. Ziolkowski and J. B. Judkins, “Propagation characteristics of ultrawide bandwidth pulsed Gaussian beams,” J. Opt. Soc. Am. A 9, 2021–2030 (1992).
    [CrossRef]
  4. D. Kelly, C. Y. Young, and L. C. Andrews, “Temporal broadening of ultrashort space-time Gaussian pulses with applications in laser satellite communication,” SPIE Rev. 3266, 231–240 (1998).
  5. J. B. Hartlay, “NASA’s future active remote sensing missions for earth science,” SPIE Reviews 4153, 5–12 (2001).
  6. S. W. Henderson, “Eye safe coherent laser radar for range and micro Doppler measurement,” Proc. IRIS Active Systems, Vol. 1, (1997).
  7. J. B. Abshire, G. J. Collatz, X. Sun, H. RiRis, A. E. Andrews, and M. Krainak, “Laser sounder technique for remotely measuring atmospheric CO2 concentrations,” EOS Trans. Am. Geophys. Union 82 (2010).
  8. W. Shi, E. B. Petersen, Z. Yao, D. T. Nguyen, J. Zong, M. A. Stephen, A. Chavez-Pirson, and N. Peyghambarian, “Killowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm,” Opt. Lett. 35, 2418–2420 (2010).
    [CrossRef]
  9. G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).
  10. V. Philippov, C. Codemard, Y. Jeong, C. Alegria, J. K. Sahu, J. Nilsson, and G. N. Pearson, “High-energy in-fiber pulse amplification for coherent lidar applications,” Opt. Lett. 29, 2590–2592 (2004).
    [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  12. M. Hildebrandt, S. Buesche, P. Weβels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16, 15970–15979 (2008).
  13. C. E. Dilley, M. A. Stephen, and M. P. Savage-Leuchs, “High SBS-threshold, narrowband, erbium codoped with ytterbium fiber amplifier pulses frequency-doubled to 770 nm,” Opt. Express 15, 14389–14395 (2007).

2010 (2)

J. B. Abshire, G. J. Collatz, X. Sun, H. RiRis, A. E. Andrews, and M. Krainak, “Laser sounder technique for remotely measuring atmospheric CO2 concentrations,” EOS Trans. Am. Geophys. Union 82 (2010).

W. Shi, E. B. Petersen, Z. Yao, D. T. Nguyen, J. Zong, M. A. Stephen, A. Chavez-Pirson, and N. Peyghambarian, “Killowatt-level stimulated-Brillouin-scattering-threshold monolithic transform-limited 100 ns pulsed fiber laser at 1530 nm,” Opt. Lett. 35, 2418–2420 (2010).
[CrossRef]

2008 (1)

2007 (1)

2004 (1)

2001 (1)

J. B. Hartlay, “NASA’s future active remote sensing missions for earth science,” SPIE Reviews 4153, 5–12 (2001).

2000 (1)

H. Hemmati, M. Wright, and C. Esproles, “High efficiency pulsed laser transmitters for deep space communications,” SPIE Reviews 3932, 188–195 (2000).

1999 (1)

A. Biswas, H. Hemmati, and J. R. Lesh, “High data rate laser transmission for free space laser communications,” SPIE Reviews 3615, 269–277 (1999).

1998 (1)

D. Kelly, C. Y. Young, and L. C. Andrews, “Temporal broadening of ultrashort space-time Gaussian pulses with applications in laser satellite communication,” SPIE Rev. 3266, 231–240 (1998).

1992 (1)

Abshire, J. B.

J. B. Abshire, G. J. Collatz, X. Sun, H. RiRis, A. E. Andrews, and M. Krainak, “Laser sounder technique for remotely measuring atmospheric CO2 concentrations,” EOS Trans. Am. Geophys. Union 82 (2010).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Alegria, C.

Andrews, A. E.

J. B. Abshire, G. J. Collatz, X. Sun, H. RiRis, A. E. Andrews, and M. Krainak, “Laser sounder technique for remotely measuring atmospheric CO2 concentrations,” EOS Trans. Am. Geophys. Union 82 (2010).

Andrews, L. C.

D. Kelly, C. Y. Young, and L. C. Andrews, “Temporal broadening of ultrashort space-time Gaussian pulses with applications in laser satellite communication,” SPIE Rev. 3266, 231–240 (1998).

Biswas, A.

A. Biswas, H. Hemmati, and J. R. Lesh, “High data rate laser transmission for free space laser communications,” SPIE Reviews 3615, 269–277 (1999).

Bourdon, P.

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

Buesche, S.

Canat, G.

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

Chavez-Pirson, A.

Codemard, C.

Collatz, G. J.

J. B. Abshire, G. J. Collatz, X. Sun, H. RiRis, A. E. Andrews, and M. Krainak, “Laser sounder technique for remotely measuring atmospheric CO2 concentrations,” EOS Trans. Am. Geophys. Union 82 (2010).

Dilley, C. E.

Durécu, A.

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

Esproles, C.

H. Hemmati, M. Wright, and C. Esproles, “High efficiency pulsed laser transmitters for deep space communications,” SPIE Reviews 3932, 188–195 (2000).

Frede, M.

Hartlay, J. B.

J. B. Hartlay, “NASA’s future active remote sensing missions for earth science,” SPIE Reviews 4153, 5–12 (2001).

Hemmati, H.

H. Hemmati, M. Wright, and C. Esproles, “High efficiency pulsed laser transmitters for deep space communications,” SPIE Reviews 3932, 188–195 (2000).

A. Biswas, H. Hemmati, and J. R. Lesh, “High data rate laser transmission for free space laser communications,” SPIE Reviews 3615, 269–277 (1999).

Henderson, S. W.

S. W. Henderson, “Eye safe coherent laser radar for range and micro Doppler measurement,” Proc. IRIS Active Systems, Vol. 1, (1997).

Hildebrandt, M.

Jeong, Y.

Jetschke, S.

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

Jolivet, V.

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

Judkins, J. B.

Kelly, D.

D. Kelly, C. Y. Young, and L. C. Andrews, “Temporal broadening of ultrashort space-time Gaussian pulses with applications in laser satellite communication,” SPIE Rev. 3266, 231–240 (1998).

Kirchhof, J.

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

Kracht, D.

Krainak, M.

J. B. Abshire, G. J. Collatz, X. Sun, H. RiRis, A. E. Andrews, and M. Krainak, “Laser sounder technique for remotely measuring atmospheric CO2 concentrations,” EOS Trans. Am. Geophys. Union 82 (2010).

Lesh, J. R.

A. Biswas, H. Hemmati, and J. R. Lesh, “High data rate laser transmission for free space laser communications,” SPIE Reviews 3615, 269–277 (1999).

Lombard, L.

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

Müller, H. R.

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

Nguyen, D. T.

Nilsson, J.

Pearson, G. N.

Petersen, E. B.

Peyghambarian, N.

Philippov, V.

RiRis, H.

J. B. Abshire, G. J. Collatz, X. Sun, H. RiRis, A. E. Andrews, and M. Krainak, “Laser sounder technique for remotely measuring atmospheric CO2 concentrations,” EOS Trans. Am. Geophys. Union 82 (2010).

Sahu, J. K.

Savage-Leuchs, M. P.

Shi, W.

Stephen, M. A.

Sun, X.

J. B. Abshire, G. J. Collatz, X. Sun, H. RiRis, A. E. Andrews, and M. Krainak, “Laser sounder technique for remotely measuring atmospheric CO2 concentrations,” EOS Trans. Am. Geophys. Union 82 (2010).

Unger, S.

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

Weßels, P.

Wright, M.

H. Hemmati, M. Wright, and C. Esproles, “High efficiency pulsed laser transmitters for deep space communications,” SPIE Reviews 3932, 188–195 (2000).

Yao, Z.

Young, C. Y.

D. Kelly, C. Y. Young, and L. C. Andrews, “Temporal broadening of ultrashort space-time Gaussian pulses with applications in laser satellite communication,” SPIE Rev. 3266, 231–240 (1998).

Ziolkowski, R. W.

Zong, J.

EOS Trans. Am. Geophys. Union (1)

J. B. Abshire, G. J. Collatz, X. Sun, H. RiRis, A. E. Andrews, and M. Krainak, “Laser sounder technique for remotely measuring atmospheric CO2 concentrations,” EOS Trans. Am. Geophys. Union 82 (2010).

J. Opt. Soc. Am. A (1)

Opt. Express (2)

Opt. Lett. (2)

SPIE Rev. (1)

D. Kelly, C. Y. Young, and L. C. Andrews, “Temporal broadening of ultrashort space-time Gaussian pulses with applications in laser satellite communication,” SPIE Rev. 3266, 231–240 (1998).

SPIE Reviews (3)

J. B. Hartlay, “NASA’s future active remote sensing missions for earth science,” SPIE Reviews 4153, 5–12 (2001).

H. Hemmati, M. Wright, and C. Esproles, “High efficiency pulsed laser transmitters for deep space communications,” SPIE Reviews 3932, 188–195 (2000).

A. Biswas, H. Hemmati, and J. R. Lesh, “High data rate laser transmission for free space laser communications,” SPIE Reviews 3615, 269–277 (1999).

Other (3)

G. Canat, L. Lombard, S. Jetschke, S. Unger, J. Kirchhof, H. R. Müller, A. Durécu, V. Jolivet, and P. Bourdon, “Er-Yb-Doped LMA fiber structures for high energy amplification of narrow linewidth pulses at 1.5 μm,” in Conference on Lasers and Electro-Optics, OSA Technical Digest Series (CD) (Optical Society of America, 2007).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

S. W. Henderson, “Eye safe coherent laser radar for range and micro Doppler measurement,” Proc. IRIS Active Systems, Vol. 1, (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Experiment system block diagram. There are five ports to monitor system and collect data. ① Electronic modulation signal from laser diode driving board; ② Seed laser monitor; ③ WDM monitor; ④ Circulator Port three to monitor back-reflected SBS; ⑤ Final output.

Fig. 2.
Fig. 2.

OSA spectrum of the SBS signal. A 0.08 nm wavelength shift can be seen clearly.

Fig. 3.
Fig. 3.

SBS power (from Circulator Port 3) as a function of: (a) Output peak power. (b) Output pulse energy.

Fig. 4.
Fig. 4.

Examples of output pulse shape: (a) Before SBS threshold. (b) After SBS threshold.

Fig. 5.
Fig. 5.

Pulse evolution at different pump current. The upper trace represents the trigger signal and the lower trace represents the laser signal. (a) 200 ns seed. (b) Output at 1.3 W pump power, pulse width was reduced to 150 ns. (c) Output at 6.6 W pump power, pulse width was reduced to 50 ns. (d) Output at 11.3 W pump power, pulse width was reduced to 15 ns.

Fig. 6.
Fig. 6.

Trigger signals (upper trace) and modulated seed laser signals (lower trace) for (a) Gaussian shape, (b) triangle shape, (c) square shape, (d) a series of six individual peaks.

Fig. 7.
Fig. 7.

Manipulating seed pulse shape to generate 200ns amplified pulses. The upper trace represents the trigger signal and the lower trace represents the laser signal. (a) Seed shape. (b) At maximum pump power (13.6 W), 200ns macropulse width was obtained.

Fig. 8.
Fig. 8.

(a) Output power as a function of pump power. (b) Output pulse energy as a function of pump power.

Fig. 9.
Fig. 9.

Spectra of 10 kHz, 20 kHz, 50 kHz, and 100 kHz repetition rates at maximum pump power of 13.4 W.

Fig. 10.
Fig. 10.

(a) and (b) The images of output pulse profile displayed in 2D and 3D views for 0.13 mJ pulses. (c) Beam quality factor M2 measurements by scanning the beam size along the propagation direction.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

νB=2nVa/λ,
T2=1/(πΔνSBS).

Metrics