Abstract

We have measured the magnetization-induced second harmonic generation (MSHG) of a nanocomposite consisting of iron oxide nanoparticles in a polymer film. The existing theoretical framework is extended to include DC magnetic fields in order to characterize the MSHG signal and analyze the measurements. Additionally, magnetic hysteresis loops are measured for four principal polarizer–analyzer configurations, revealing the PIN-POUT and SIN-POUT polarizer–analyzer configurations to be sensitive to the transverse magnetic field. These results demonstrate the use of MSHG and the applied formalism as a tool to study magnetic nanoparticles and their magnetic properties.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Beveridge, J. R. Stephens, and M. E. Williams, “The use of magnetic nanoparticles in analytical chemistry,” Annu. Rev. Anal. Chem. 4, 251–273 (2010).
    [CrossRef]
  2. A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
    [CrossRef]
  3. E. Katz and I. Willner, “Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. 43, 6042–6108 (2004).
    [CrossRef]
  4. A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials 26, 3995–4021 (2005).
    [CrossRef] [PubMed]
  5. S. Foner, “Versatile and sensitive vibrating sample magnetometer,” Rev. Sci. Instrum. 30, 548–557 (1959).
    [CrossRef]
  6. G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys. 94, 3520–3528 (2003).
    [CrossRef]
  7. T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques: An Introduction (CRC Press, 2009).
    [CrossRef]
  8. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
    [CrossRef]
  9. V. K. Valev, M. K. Vanbel, B. Vincent, V. V. Moshchalkov, M. Caymax, and T. Verbiest, “Second harmonic generation indicates a better Si/Ge interface quality for higher temperature and with N2 rather than with H2 as the carrier gas,” IEEE Electron. Device Lett. 32, 12–14 (2011).
    [CrossRef]
  10. I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
    [CrossRef]
  11. M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
    [CrossRef]
  12. M. Kauranen, S. V. Elshocht, T. Verbiest, and A. Persoons, “Tensor analysis of the second-order nonlinear optical susceptibility of chiral anisotropic thin films,” J. Chem. Phys. 112, 1497–1502 (2000).
    [CrossRef]
  13. P. S. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130, 919–929 (1963).
    [CrossRef]
  14. R. P. Pan, H. D. Wei, and Y. R. Shen, “Optical second-harmonic generation from magnetized surfaces,” Phys. Rev. B 39, 1229–1234 (1989).
    [CrossRef]
  15. J. Reif, J. C. Zink, C. M. Schneider, and J. Kirschner, “Effects of surface magnetism on optical second harmonic generation,” Phys. Rev. Lett. 67, 2878–2881 (1991).
    [CrossRef] [PubMed]
  16. A. Kirilyuk and T. Rasing, “Magnetization-induced-second-harmonic generation from surfaces and interfaces,” J. Opt. Soc. Am. B 22, 148–167 (2005).
    [CrossRef]
  17. J. F. McGilp, L. Carroll, K. Fleischer, J. P. Cunniffe, and S. Ryan, “Magnetic second-harmonic generation from interfaces and nanostructures,” J. Magn. Magn. Mater. 322, 1488–1493 (2010).
    [CrossRef]
  18. V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface,” Phys. Rev. Lett. 96, 067206 (2006).
    [CrossRef] [PubMed]
  19. V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
    [CrossRef]
  20. Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
    [CrossRef]
  21. O. A. Aktsipetrov, T. V. Murzina, E. M. Kim, R. V. Kapra, A. A. Fedyanin, M. Inoue, A. F. Kravets, S. V. Kuznetsova, M. V. Ivanchenko, and V. G. Lifshits, “Magnetization-induced second- and third-harmonic generation in magnetic thin films and nanoparticles,” J. Opt. Soc. Am. B 22, 138–147 (2005).
    [CrossRef]
  22. L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
    [CrossRef]
  23. S. Behrens, “Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions,” Nanoscale 3, 877–892 (2011).
    [CrossRef]
  24. I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
    [CrossRef]
  25. J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
    [CrossRef]
  26. J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B 51, 1425–1434 (1995).
    [CrossRef]
  27. J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, “Uniqueness of wave-plate measurements in determining the tensor components of second-order surface nonlinearities,” Phys. Rev. B 55, 5021–5026 (1997).
    [CrossRef]
  28. V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Influence of quadratic contributions in magnetization-induced second harmonic generation studies of magnetization reversal,” Phys. Status Solidi B 242, 3027–3031 (2005).
    [CrossRef]

2011

V. K. Valev, M. K. Vanbel, B. Vincent, V. V. Moshchalkov, M. Caymax, and T. Verbiest, “Second harmonic generation indicates a better Si/Ge interface quality for higher temperature and with N2 rather than with H2 as the carrier gas,” IEEE Electron. Device Lett. 32, 12–14 (2011).
[CrossRef]

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

S. Behrens, “Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions,” Nanoscale 3, 877–892 (2011).
[CrossRef]

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

2010

J. F. McGilp, L. Carroll, K. Fleischer, J. P. Cunniffe, and S. Ryan, “Magnetic second-harmonic generation from interfaces and nanostructures,” J. Magn. Magn. Mater. 322, 1488–1493 (2010).
[CrossRef]

J. S. Beveridge, J. R. Stephens, and M. E. Williams, “The use of magnetic nanoparticles in analytical chemistry,” Annu. Rev. Anal. Chem. 4, 251–273 (2010).
[CrossRef]

2009

Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
[CrossRef]

I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
[CrossRef]

2007

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[CrossRef]

2006

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface,” Phys. Rev. Lett. 96, 067206 (2006).
[CrossRef] [PubMed]

2005

A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials 26, 3995–4021 (2005).
[CrossRef] [PubMed]

I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
[CrossRef]

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Influence of quadratic contributions in magnetization-induced second harmonic generation studies of magnetization reversal,” Phys. Status Solidi B 242, 3027–3031 (2005).
[CrossRef]

O. A. Aktsipetrov, T. V. Murzina, E. M. Kim, R. V. Kapra, A. A. Fedyanin, M. Inoue, A. F. Kravets, S. V. Kuznetsova, M. V. Ivanchenko, and V. G. Lifshits, “Magnetization-induced second- and third-harmonic generation in magnetic thin films and nanoparticles,” J. Opt. Soc. Am. B 22, 138–147 (2005).
[CrossRef]

A. Kirilyuk and T. Rasing, “Magnetization-induced-second-harmonic generation from surfaces and interfaces,” J. Opt. Soc. Am. B 22, 148–167 (2005).
[CrossRef]

2004

E. Katz and I. Willner, “Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. 43, 6042–6108 (2004).
[CrossRef]

2003

G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys. 94, 3520–3528 (2003).
[CrossRef]

2000

M. Kauranen, S. V. Elshocht, T. Verbiest, and A. Persoons, “Tensor analysis of the second-order nonlinear optical susceptibility of chiral anisotropic thin films,” J. Chem. Phys. 112, 1497–1502 (2000).
[CrossRef]

1997

L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, “Uniqueness of wave-plate measurements in determining the tensor components of second-order surface nonlinearities,” Phys. Rev. B 55, 5021–5026 (1997).
[CrossRef]

1995

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B 51, 1425–1434 (1995).
[CrossRef]

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

1991

J. Reif, J. C. Zink, C. M. Schneider, and J. Kirschner, “Effects of surface magnetism on optical second harmonic generation,” Phys. Rev. Lett. 67, 2878–2881 (1991).
[CrossRef] [PubMed]

1989

R. P. Pan, H. D. Wei, and Y. R. Shen, “Optical second-harmonic generation from magnetized surfaces,” Phys. Rev. B 39, 1229–1234 (1989).
[CrossRef]

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

1963

P. S. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130, 919–929 (1963).
[CrossRef]

1959

S. Foner, “Versatile and sensitive vibrating sample magnetometer,” Rev. Sci. Instrum. 30, 548–557 (1959).
[CrossRef]

Aktsipetrov, O. A.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
[CrossRef]

O. A. Aktsipetrov, T. V. Murzina, E. M. Kim, R. V. Kapra, A. A. Fedyanin, M. Inoue, A. F. Kravets, S. V. Kuznetsova, M. V. Ivanchenko, and V. G. Lifshits, “Magnetization-induced second- and third-harmonic generation in magnetic thin films and nanoparticles,” J. Opt. Soc. Am. B 22, 138–147 (2005).
[CrossRef]

Ameloot, M.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Beecroft, L. L.

L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

Behrens, S.

S. Behrens, “Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions,” Nanoscale 3, 877–892 (2011).
[CrossRef]

Berquo, T. S.

G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys. 94, 3520–3528 (2003).
[CrossRef]

Beveridge, J. S.

J. S. Beveridge, J. R. Stephens, and M. E. Williams, “The use of magnetic nanoparticles in analytical chemistry,” Annu. Rev. Anal. Chem. 4, 251–273 (2010).
[CrossRef]

Biris, C. G.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Carroll, L.

J. F. McGilp, L. Carroll, K. Fleischer, J. P. Cunniffe, and S. Ryan, “Magnetic second-harmonic generation from interfaces and nanostructures,” J. Magn. Magn. Mater. 322, 1488–1493 (2010).
[CrossRef]

Caymax, M.

V. K. Valev, M. K. Vanbel, B. Vincent, V. V. Moshchalkov, M. Caymax, and T. Verbiest, “Second harmonic generation indicates a better Si/Ge interface quality for higher temperature and with N2 rather than with H2 as the carrier gas,” IEEE Electron. Device Lett. 32, 12–14 (2011).
[CrossRef]

Chang, Y.-M.

Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
[CrossRef]

Chen, C. H.

Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
[CrossRef]

Chiang, Y. F.

Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
[CrossRef]

Chu, H. W.

Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
[CrossRef]

Clays, K.

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques: An Introduction (CRC Press, 2009).
[CrossRef]

Cunniffe, J. P.

J. F. McGilp, L. Carroll, K. Fleischer, J. P. Cunniffe, and S. Ryan, “Magnetic second-harmonic generation from interfaces and nanostructures,” J. Magn. Magn. Mater. 322, 1488–1493 (2010).
[CrossRef]

De Clercq, B.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Ebothé, J.

I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
[CrossRef]

Elshocht, S. V.

M. Kauranen, S. V. Elshocht, T. Verbiest, and A. Persoons, “Tensor analysis of the second-order nonlinear optical susceptibility of chiral anisotropic thin films,” J. Chem. Phys. 112, 1497–1502 (2000).
[CrossRef]

Fedyanin, A. A.

Fleischer, K.

J. F. McGilp, L. Carroll, K. Fleischer, J. P. Cunniffe, and S. Ryan, “Magnetic second-harmonic generation from interfaces and nanostructures,” J. Magn. Magn. Mater. 322, 1488–1493 (2010).
[CrossRef]

Foner, S.

S. Foner, “Versatile and sensitive vibrating sample magnetometer,” Rev. Sci. Instrum. 30, 548–557 (1959).
[CrossRef]

Fonseca, F. C.

G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys. 94, 3520–3528 (2003).
[CrossRef]

Fourier, S.

I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
[CrossRef]

Fuks-Janczarek, I.

I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
[CrossRef]

Gillijns, W.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Goya, G. F.

G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys. 94, 3520–3528 (2003).
[CrossRef]

Gruyters, M.

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface,” Phys. Rev. Lett. 96, 067206 (2006).
[CrossRef] [PubMed]

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Influence of quadratic contributions in magnetization-induced second harmonic generation studies of magnetization reversal,” Phys. Status Solidi B 242, 3027–3031 (2005).
[CrossRef]

Gupta, A. K.

A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials 26, 3995–4021 (2005).
[CrossRef] [PubMed]

Gupta, M.

A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials 26, 3995–4021 (2005).
[CrossRef] [PubMed]

Havinga, E. E.

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

Hsu, Y. J.

Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
[CrossRef]

Inoue, M.

Ivanchenko, M. V.

Jeyaram, Y.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Kapra, R. V.

Katz, E.

E. Katz and I. Willner, “Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. 43, 6042–6108 (2004).
[CrossRef]

Kauranen, M.

M. Kauranen, S. V. Elshocht, T. Verbiest, and A. Persoons, “Tensor analysis of the second-order nonlinear optical susceptibility of chiral anisotropic thin films,” J. Chem. Phys. 112, 1497–1502 (2000).
[CrossRef]

J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, “Uniqueness of wave-plate measurements in determining the tensor components of second-order surface nonlinearities,” Phys. Rev. B 55, 5021–5026 (1997).
[CrossRef]

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B 51, 1425–1434 (1995).
[CrossRef]

Kauranen, M. M.

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

Kim, E. M.

Kirilyuk, A.

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface,” Phys. Rev. Lett. 96, 067206 (2006).
[CrossRef] [PubMed]

A. Kirilyuk and T. Rasing, “Magnetization-induced-second-harmonic generation from surfaces and interfaces,” J. Opt. Soc. Am. B 22, 148–167 (2005).
[CrossRef]

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Influence of quadratic contributions in magnetization-induced second harmonic generation studies of magnetization reversal,” Phys. Status Solidi B 242, 3027–3031 (2005).
[CrossRef]

Kirschner, J.

J. Reif, J. C. Zink, C. M. Schneider, and J. Kirschner, “Effects of surface magnetism on optical second harmonic generation,” Phys. Rev. Lett. 67, 2878–2881 (1991).
[CrossRef] [PubMed]

Kityk, I. V.

I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
[CrossRef]

Kobayashi, K.

I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
[CrossRef]

Kolmychek, I. A.

I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
[CrossRef]

Kravets, A. F.

Kuznetsova, S. V.

Lebedev, O. I.

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

Lifshits, V. G.

Lin, J. G.

Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
[CrossRef]

Liu, T. M.

Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
[CrossRef]

Lu, A.-H.

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[CrossRef]

Maki, J. J.

J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, “Uniqueness of wave-plate measurements in determining the tensor components of second-order surface nonlinearities,” Phys. Rev. B 55, 5021–5026 (1997).
[CrossRef]

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B 51, 1425–1434 (1995).
[CrossRef]

McGilp, J. F.

J. F. McGilp, L. Carroll, K. Fleischer, J. P. Cunniffe, and S. Ryan, “Magnetic second-harmonic generation from interfaces and nanostructures,” J. Magn. Magn. Mater. 322, 1488–1493 (2010).
[CrossRef]

Meijer, E. W.

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

Morales, M. P.

G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys. 94, 3520–3528 (2003).
[CrossRef]

Moshchalkov, V. V.

V. K. Valev, M. K. Vanbel, B. Vincent, V. V. Moshchalkov, M. Caymax, and T. Verbiest, “Second harmonic generation indicates a better Si/Ge interface quality for higher temperature and with N2 rather than with H2 as the carrier gas,” IEEE Electron. Device Lett. 32, 12–14 (2011).
[CrossRef]

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Murzina, T. V.

I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
[CrossRef]

O. A. Aktsipetrov, T. V. Murzina, E. M. Kim, R. V. Kapra, A. A. Fedyanin, M. Inoue, A. F. Kravets, S. V. Kuznetsova, M. V. Ivanchenko, and V. G. Lifshits, “Magnetization-induced second- and third-harmonic generation in magnetic thin films and nanoparticles,” J. Opt. Soc. Am. B 22, 138–147 (2005).
[CrossRef]

Nolte, R. J. M.

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

Ober, C. K.

L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

Oyama, M.

I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
[CrossRef]

Paddubrouskaya, H.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Pan, R. P.

R. P. Pan, H. D. Wei, and Y. R. Shen, “Optical second-harmonic generation from magnetized surfaces,” Phys. Rev. B 39, 1229–1234 (1989).
[CrossRef]

Panoiu, N. C.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Pershan, P. S.

P. S. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130, 919–929 (1963).
[CrossRef]

Persoons, A.

M. Kauranen, S. V. Elshocht, T. Verbiest, and A. Persoons, “Tensor analysis of the second-order nonlinear optical susceptibility of chiral anisotropic thin films,” J. Chem. Phys. 112, 1497–1502 (2000).
[CrossRef]

J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, “Uniqueness of wave-plate measurements in determining the tensor components of second-order surface nonlinearities,” Phys. Rev. B 55, 5021–5026 (1997).
[CrossRef]

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B 51, 1425–1434 (1995).
[CrossRef]

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

Rasing, T.

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface,” Phys. Rev. Lett. 96, 067206 (2006).
[CrossRef] [PubMed]

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Influence of quadratic contributions in magnetization-induced second harmonic generation studies of magnetization reversal,” Phys. Status Solidi B 242, 3027–3031 (2005).
[CrossRef]

A. Kirilyuk and T. Rasing, “Magnetization-induced-second-harmonic generation from surfaces and interfaces,” J. Opt. Soc. Am. B 22, 148–167 (2005).
[CrossRef]

Reif, J.

J. Reif, J. C. Zink, C. M. Schneider, and J. Kirschner, “Effects of surface magnetism on optical second harmonic generation,” Phys. Rev. Lett. 67, 2878–2881 (1991).
[CrossRef] [PubMed]

Rodriguez, V.

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques: An Introduction (CRC Press, 2009).
[CrossRef]

Ryan, S.

J. F. McGilp, L. Carroll, K. Fleischer, J. P. Cunniffe, and S. Ryan, “Magnetic second-harmonic generation from interfaces and nanostructures,” J. Magn. Magn. Mater. 322, 1488–1493 (2010).
[CrossRef]

Sahraoui, B.

I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
[CrossRef]

Salabas, E. L.

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[CrossRef]

Sato, N.

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

Schneider, C. M.

J. Reif, J. C. Zink, C. M. Schneider, and J. Kirschner, “Effects of surface magnetism on optical second harmonic generation,” Phys. Rev. Lett. 67, 2878–2881 (1991).
[CrossRef] [PubMed]

Schouten, A. J.

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

Schüth, F.

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[CrossRef]

Shen, Y. R.

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

R. P. Pan, H. D. Wei, and Y. R. Shen, “Optical second-harmonic generation from magnetized surfaces,” Phys. Rev. B 39, 1229–1234 (1989).
[CrossRef]

Silhanek, A. V.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Stephens, J. R.

J. S. Beveridge, J. R. Stephens, and M. E. Williams, “The use of magnetic nanoparticles in analytical chemistry,” Annu. Rev. Anal. Chem. 4, 251–273 (2010).
[CrossRef]

Teerenstra, M. N.

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

Tendeloo, G. V.

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

Umar, A. A.

I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
[CrossRef]

Valev, V. K.

V. K. Valev, M. K. Vanbel, B. Vincent, V. V. Moshchalkov, M. Caymax, and T. Verbiest, “Second harmonic generation indicates a better Si/Ge interface quality for higher temperature and with N2 rather than with H2 as the carrier gas,” IEEE Electron. Device Lett. 32, 12–14 (2011).
[CrossRef]

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
[CrossRef]

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface,” Phys. Rev. Lett. 96, 067206 (2006).
[CrossRef] [PubMed]

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Influence of quadratic contributions in magnetization-induced second harmonic generation studies of magnetization reversal,” Phys. Status Solidi B 242, 3027–3031 (2005).
[CrossRef]

Vanacken, J.

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

Vanbel, M. K.

V. K. Valev, M. K. Vanbel, B. Vincent, V. V. Moshchalkov, M. Caymax, and T. Verbiest, “Second harmonic generation indicates a better Si/Ge interface quality for higher temperature and with N2 rather than with H2 as the carrier gas,” IEEE Electron. Device Lett. 32, 12–14 (2011).
[CrossRef]

Verbiest, T.

V. K. Valev, M. K. Vanbel, B. Vincent, V. V. Moshchalkov, M. Caymax, and T. Verbiest, “Second harmonic generation indicates a better Si/Ge interface quality for higher temperature and with N2 rather than with H2 as the carrier gas,” IEEE Electron. Device Lett. 32, 12–14 (2011).
[CrossRef]

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
[CrossRef]

M. Kauranen, S. V. Elshocht, T. Verbiest, and A. Persoons, “Tensor analysis of the second-order nonlinear optical susceptibility of chiral anisotropic thin films,” J. Chem. Phys. 112, 1497–1502 (2000).
[CrossRef]

J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, “Uniqueness of wave-plate measurements in determining the tensor components of second-order surface nonlinearities,” Phys. Rev. B 55, 5021–5026 (1997).
[CrossRef]

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques: An Introduction (CRC Press, 2009).
[CrossRef]

Vincent, B.

V. K. Valev, M. K. Vanbel, B. Vincent, V. V. Moshchalkov, M. Caymax, and T. Verbiest, “Second harmonic generation indicates a better Si/Ge interface quality for higher temperature and with N2 rather than with H2 as the carrier gas,” IEEE Electron. Device Lett. 32, 12–14 (2011).
[CrossRef]

Volodin, A.

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Wei, H. D.

R. P. Pan, H. D. Wei, and Y. R. Shen, “Optical second-harmonic generation from magnetized surfaces,” Phys. Rev. B 39, 1229–1234 (1989).
[CrossRef]

Williams, M. E.

J. S. Beveridge, J. R. Stephens, and M. E. Williams, “The use of magnetic nanoparticles in analytical chemistry,” Annu. Rev. Anal. Chem. 4, 251–273 (2010).
[CrossRef]

Willner, I.

E. Katz and I. Willner, “Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. 43, 6042–6108 (2004).
[CrossRef]

Wouters, J.

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
[CrossRef]

Yamada, H.

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

Zink, J. C.

J. Reif, J. C. Zink, C. M. Schneider, and J. Kirschner, “Effects of surface magnetism on optical second harmonic generation,” Phys. Rev. Lett. 67, 2878–2881 (1991).
[CrossRef] [PubMed]

ACS Nano

V. K. Valev, A. V. Silhanek, W. Gillijns, Y. Jeyaram, H. Paddubrouskaya, A. Volodin, C. G. Biris, N. C. Panoiu, B. De Clercq, M. Ameloot, O. A. Aktsipetrov, V. V. Moshchalkov, and T. Verbiest, “Plasmons reveal the direction of magnetization in nickel nanostructures,” ACS Nano 5, 91–96 (2011).
[CrossRef]

Adv. Mater.

M. M. Kauranen, T. Verbiest, A. Persoons, E. W. Meijer, M. N. Teerenstra, A. J. Schouten, R. J. M. Nolte, and E. E. Havinga, “Chiral effects in the second-order optical nonlinearity of a poly(isocyanide) monolayer,” Adv. Mater. 7, 641–644 (1995).
[CrossRef]

Angew. Chem. Int. Ed.

A.-H. Lu, E. L. Salabas, and F. Schüth, “Magnetic nanoparticles: synthesis, protection, functionalization, and application,” Angew. Chem. Int. Ed. 46, 1222–1244 (2007).
[CrossRef]

E. Katz and I. Willner, “Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications,” Angew. Chem. Int. Ed. 43, 6042–6108 (2004).
[CrossRef]

Annu. Rev. Anal. Chem.

J. S. Beveridge, J. R. Stephens, and M. E. Williams, “The use of magnetic nanoparticles in analytical chemistry,” Annu. Rev. Anal. Chem. 4, 251–273 (2010).
[CrossRef]

Appl. Phys. Lett.

Y. F. Chiang, Y. J. Hsu, T. M. Liu, H. W. Chu, J. G. Lin, C. H. Chen, and Y.-M. Chang, “Magnetization reversal process of ferromagnetic granular thin films probed by magnetization-induced second harmonic generation,” Appl. Phys. Lett. 95, 172515 (2009).
[CrossRef]

Biomaterials

A. K. Gupta and M. Gupta, “Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications,” Biomaterials 26, 3995–4021 (2005).
[CrossRef] [PubMed]

Chem. Mater.

L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9, 1302–1317 (1997).
[CrossRef]

IEEE Electron. Device Lett.

V. K. Valev, M. K. Vanbel, B. Vincent, V. V. Moshchalkov, M. Caymax, and T. Verbiest, “Second harmonic generation indicates a better Si/Ge interface quality for higher temperature and with N2 rather than with H2 as the carrier gas,” IEEE Electron. Device Lett. 32, 12–14 (2011).
[CrossRef]

J. Appl. Phys.

G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, “Static and dynamic magnetic properties of spherical magnetite nanoparticles,” J. Appl. Phys. 94, 3520–3528 (2003).
[CrossRef]

J. Wouters, O. I. Lebedev, G. V. Tendeloo, H. Yamada, N. Sato, J. Vanacken, V. V. Moshchalkov, T. Verbiest, and V. K. Valev, “Preparing polymer films doped with magnetic nanoparticles by spin-coating and melt-processing can induce an in-plane magnetic anisotropy,” J. Appl. Phys. 109, 076105 (2011).
[CrossRef]

J. Chem. Phys.

M. Kauranen, S. V. Elshocht, T. Verbiest, and A. Persoons, “Tensor analysis of the second-order nonlinear optical susceptibility of chiral anisotropic thin films,” J. Chem. Phys. 112, 1497–1502 (2000).
[CrossRef]

J. Magn. Magn. Mater.

J. F. McGilp, L. Carroll, K. Fleischer, J. P. Cunniffe, and S. Ryan, “Magnetic second-harmonic generation from interfaces and nanostructures,” J. Magn. Magn. Mater. 322, 1488–1493 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Nanoscale

S. Behrens, “Preparation of functional magnetic nanocomposites and hybrid materials: recent progress and future directions,” Nanoscale 3, 877–892 (2011).
[CrossRef]

Nanotechnology

I. V. Kityk, J. Ebothé, I. Fuks-Janczarek, A. A. Umar, K. Kobayashi, M. Oyama, and B. Sahraoui, “Nonlinear optical properties of Au nanoparticles on indium–tin oxide substrate,” Nanotechnology 16, 1687–1692 (2005).
[CrossRef]

Nature

Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989).
[CrossRef]

Phys. Rev.

P. S. Pershan, “Nonlinear optical properties of solids: energy considerations,” Phys. Rev. 130, 919–929 (1963).
[CrossRef]

Phys. Rev. B

R. P. Pan, H. D. Wei, and Y. R. Shen, “Optical second-harmonic generation from magnetized surfaces,” Phys. Rev. B 39, 1229–1234 (1989).
[CrossRef]

J. J. Maki, M. Kauranen, and A. Persoons, “Surface second-harmonic generation from chiral materials,” Phys. Rev. B 51, 1425–1434 (1995).
[CrossRef]

J. J. Maki, M. Kauranen, T. Verbiest, and A. Persoons, “Uniqueness of wave-plate measurements in determining the tensor components of second-order surface nonlinearities,” Phys. Rev. B 55, 5021–5026 (1997).
[CrossRef]

Phys. Rev. Lett.

J. Reif, J. C. Zink, C. M. Schneider, and J. Kirschner, “Effects of surface magnetism on optical second harmonic generation,” Phys. Rev. Lett. 67, 2878–2881 (1991).
[CrossRef] [PubMed]

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface,” Phys. Rev. Lett. 96, 067206 (2006).
[CrossRef] [PubMed]

Phys. Status Solidi B

V. K. Valev, M. Gruyters, A. Kirilyuk, and T. Rasing, “Influence of quadratic contributions in magnetization-induced second harmonic generation studies of magnetization reversal,” Phys. Status Solidi B 242, 3027–3031 (2005).
[CrossRef]

Rev. Sci. Instrum.

S. Foner, “Versatile and sensitive vibrating sample magnetometer,” Rev. Sci. Instrum. 30, 548–557 (1959).
[CrossRef]

Solid State Phenom.

I. A. Kolmychek, T. V. Murzina, S. Fourier, J. Wouters, V. K. Valev, T. Verbiest, and O. A. Aktsipetrov, “Second harmonic generation in core (shell) y-Fe2O3 (Au) nanoparticles,” Solid State Phenom. 152–153, 508–511 (2009).
[CrossRef]

Other

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques: An Introduction (CRC Press, 2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for MSHG measurements of an iron oxide nanocomposite. A transverse magnetic field is applied, and the sample is measured at 45 ° in transmission.

Fig. 2
Fig. 2

Magnetic contrast of the SHG intensity for four principal polarizer–analyzer configurations. Measurements performed as a function of the input polarization by rotating a quarter-wave plate placed before the sample. Solid lines are the fits according to Eq. (3), and the fitting parameters are displayed in Table 1. A clear influence of the sign of the magnetic field on the intensity of the SHG signal is seen in all four principal polarizer–analyzer configurations.

Fig. 3
Fig. 3

Polarization of the MSHG, measured by rotation of the analyzer, where 0 ° analyzer rotation corresponds to P OUT . The SHG generated by P IN polarized light mainly varies in amplitude upon reversal of the sign of the magnetic field, while the SHG generated by S IN polarized light slightly rotates the polarization upon reversal of the magnetic field.

Fig. 4
Fig. 4

MSHG hysteresis loops for four principal polarizer–analyzer configurations. P IN - P OUT and S IN - P OUT SHG is sensitive to the transverse magnetic field, with relative changes in SHG of more than 10%. P IN - S OUT and S IN - S OUT show no magnetic contrast.

Tables (1)

Tables Icon

Table 1 Fitting Components of the Fit of Eq. (3) to the Data in Fig. 2 a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P i ( 2 ω ) = j , k χ i j k ( 2 ) E j ( ω ) E k ( ω ) ,
P i ( 2 ω ) = j , k χ i j k ( 2 ) E j ( ω ) E k ( ω ) + j , k , l χ i j k l ( 3 ) E j ( ω ) E k ( ω ) M l ,
I ( 2 ω ) s , p [ f s , p E p 2 ( ω ) + g s , p E s 2 ( ω ) + h s , p E p ( ω ) E s ( ω ) ] 2 ,
f s = 0
g s = 0
h s = 2 ( χ y y z ( 2 ) + χ y x y y ( 3 ) M y )
f p = 1 ( 2 ) 3 ( χ z x x ( 2 ) + χ z z z ( 2 ) + 2 χ x x z ( 2 ) + ( χ x x x y ( 3 ) + χ x z z y ( 3 ) + 2 χ z x z y ( 3 ) ) M y )
g p = 1 2 ( χ z x x ( 2 ) + χ x y y y ( 3 ) M y )
h p = 0.

Metrics