Abstract

We propose dual-wavelength digital holographic microscopy with a slightly off-axis configuration. The axial measurement range without phase ambiguity is extended to the micrometer range by synthesizing a beat wavelength between the two wavelengths with separation of 157 nm. Real-time measurement of the specimen is made possible by virtue of the high wavelength selectivity of the Bayer mosaic filtered color CCD camera. The principle of the method is exposed, and the practicability of the proposed configuration is demonstrated by the experimental results on a vortex phase plate and a rectangular phase step.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).
    [CrossRef]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).
    [CrossRef]
  3. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).
    [CrossRef]
  4. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30, 468–470 (2005).
    [CrossRef]
  5. C. J. Mann, L. Yu, C. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
    [CrossRef]
  6. X. F. Meng, L. Z. Cai, X. F. Xu, X. L. Yang, X. X. Shen, G. Y. Dong, and Y. R. Wang, “Two-step phase-shifting interferometry and its application in image encryption,” Opt. Lett. 31, 1414–1416 (2006).
    [CrossRef]
  7. M. Potcoava and M. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Appl. Opt. 48, H9–H15 (2009).
    [CrossRef]
  8. D. C. Ghighlia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley-Interscience, 1998).
  9. A. T. Forrester, W. E. Parkins, and E. Gerjuoy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72, 728–728 (1947).
    [CrossRef]
  10. J. Gass, A. Dakoff, and M. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28, 1141–1143 (2003).
    [CrossRef]
  11. D. Parshall and M. Kim, “Digital holographic microscopy with dual-wavelength phase unwrapping,” Appl. Opt. 45, 451–459 (2006).
    [CrossRef]
  12. A. Khmaladze, M. Kim, and C. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
    [CrossRef]
  13. A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
    [CrossRef]
  14. L. Yu and M. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12, 6632–6641 (2004).
    [CrossRef]
  15. P. Almoro, W. Garcia, and C. Saloma, “Colored object recognition by digital holography and a hydrogen Raman shifter,” Opt. Express 15, 7176–7181 (2007).
    [CrossRef]
  16. S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. DeNicola, and A. Finizio, “Three-dimensional color object visualization and recognition using multi-wavelength computational holography,” Opt. Express 15, 9394–9402 (2007).
    [CrossRef]
  17. B. Javidi, P. Ferraro, S. Hong, S. Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Opt. Lett. 30, 144–146 (2005).
    [CrossRef]
  18. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Appl. Opt. 47, D38–D43 (2008).
    [CrossRef]
  19. P. Almoro, M. Cadatal, W. Garcia, and C. Saloma, “Pulsed full-color digital holography with a hydrogen Raman shifter,” Appl. Opt. 43, 2267–2271 (2004).
    [CrossRef]
  20. J. Rosen, Holography, Research and Technologies (InTech, 2011).
  21. C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
    [CrossRef]
  22. A. Wada, M. Kato, and Y. Ishii, “Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes,” J. Opt. Soc. Am. A 25, 3013–3020 (2008).
    [CrossRef]
  23. R. Onodera and Y. Ishii, “Two-wavelength interferometry that uses a Fourier-transform method,” Appl. Opt. 37, 7988–7994 (1998).
    [CrossRef]
  24. J. Kühn, T. Colombb, F. Montfort, F. Charrière, Y. Emeryc, E. Cuchec, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
    [CrossRef]
  25. N. Shaked, Y. Zhu, M. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
    [CrossRef]
  26. P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19, 1930–1935 (2011).
    [CrossRef]
  27. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
    [CrossRef]
  28. T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
    [CrossRef]

2011 (1)

2009 (2)

2008 (4)

2007 (3)

2006 (2)

2005 (3)

2004 (2)

2003 (1)

2001 (1)

2000 (2)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Appl. Opt. 39, 4070–4075 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

1974 (1)

1947 (1)

A. T. Forrester, W. E. Parkins, and E. Gerjuoy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72, 728–728 (1947).
[CrossRef]

Adams, M.

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

Alfieri, D.

Almoro, P.

Bevilacqua, F.

Blandon, A.

A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[CrossRef]

Brangaccio, D. J.

Bruning, J. H.

Cadatal, M.

Cai, L. Z.

Castaneda, R.

A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[CrossRef]

Charrière, F.

Colomb, T.

Colombb, T.

Cuche, E.

Cuchec, E.

Dakoff, A.

DeNicola, S.

Depeursinge, C.

Dong, G. Y.

Emery, Y.

Emeryc, Y.

Ferraro, P.

Finizio, A.

Forrester, A. T.

A. T. Forrester, W. E. Parkins, and E. Gerjuoy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72, 728–728 (1947).
[CrossRef]

Gallagher, J. E.

Gao, P.

Garcia, W.

Gass, J.

Gerjuoy, E.

A. T. Forrester, W. E. Parkins, and E. Gerjuoy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72, 728–728 (1947).
[CrossRef]

Ghighlia, D. C.

D. C. Ghighlia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley-Interscience, 1998).

Guo, R.

Harder, I.

Herriott, D. R.

Hong, S.

Ishii, Y.

Javidi, B.

Jueptner, W. P. O.

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

Kato, J.

Kato, M.

Khmaladze, A.

A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[CrossRef]

A. Khmaladze, M. Kim, and C. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
[CrossRef]

Kim, M.

Kreis, T. M.

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

Kühn, J.

Lo, C.

Magistretti, P. J.

Mann, C. J.

Mantel, K.

Marquet, P.

Meng, X. F.

Min, J.

Mizuno, J.

Montfort, F.

Nercissian, V.

Nicola, S.

Nitanai, E.

Nomura, T.

Numata, T.

Ohta, S.

Okamura, M.

Onodera, R.

Osten, W.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[CrossRef]

Parkins, W. E.

A. T. Forrester, W. E. Parkins, and E. Gerjuoy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72, 728–728 (1947).
[CrossRef]

Parshall, D.

Pierattini, G.

Potcoava, M.

Pritt, M. D.

D. C. Ghighlia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley-Interscience, 1998).

Rappaz, B.

Restrepo-Martinez, A.

A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[CrossRef]

Rinehart, M.

Rosen, J.

J. Rosen, Holography, Research and Technologies (InTech, 2011).

Rosenfeld, D. P.

Saloma, C.

Seebacher, S.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[CrossRef]

Shaked, N.

Shen, X. X.

Wada, A.

Wagner, C.

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[CrossRef]

Wang, Y. R.

Wax, A.

White, A. D.

Xu, X. F.

Yamaguchi, I.

Yang, X. L.

Yao, B.

Ye, T.

Yeom, S.

Yu, L.

Zheng, J.

Zhu, Y.

Appl. Opt. (8)

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

C. Wagner, W. Osten, and S. Seebacher, “Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring,” Opt. Eng. 39, 79–85 (2000).
[CrossRef]

Opt. Express (8)

L. Yu and M. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Opt. Express 12, 6632–6641 (2004).
[CrossRef]

C. J. Mann, L. Yu, C. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693–8698 (2005).
[CrossRef]

N. Shaked, Y. Zhu, M. Rinehart, and A. Wax, “Two-step-only phase-shifting interferometry with optimized detector bandwidth for microscopy of live cells,” Opt. Express 17, 15585–15591 (2009).
[CrossRef]

P. Gao, B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. Mantel, “Parallel two-step phase-shifting point-diffraction interferometry for microscopy based on a pair of cube beamsplitters,” Opt. Express 19, 1930–1935 (2011).
[CrossRef]

A. Khmaladze, M. Kim, and C. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Opt. Express 16, 10900–10911 (2008).
[CrossRef]

P. Almoro, W. Garcia, and C. Saloma, “Colored object recognition by digital holography and a hydrogen Raman shifter,” Opt. Express 15, 7176–7181 (2007).
[CrossRef]

J. Kühn, T. Colombb, F. Montfort, F. Charrière, Y. Emeryc, E. Cuchec, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15, 7231–7242 (2007).
[CrossRef]

S. Yeom, B. Javidi, P. Ferraro, D. Alfieri, S. DeNicola, and A. Finizio, “Three-dimensional color object visualization and recognition using multi-wavelength computational holography,” Opt. Express 15, 9394–9402 (2007).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (1)

A. T. Forrester, W. E. Parkins, and E. Gerjuoy, “On the possibility of observing beat frequencies between lines in the visible spectrum,” Phys. Rev. 72, 728–728 (1947).
[CrossRef]

Proc. SPIE (1)

T. M. Kreis, M. Adams, and W. P. O. Jueptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997).
[CrossRef]

Other (3)

A. Khmaladze, A. Restrepo-Martinez, M. Kim, R. Castaneda, and A. Blandon, “Simultaneous dual-wavelength reflection digital holography applied to the study of the porous coal samples,” Appl. Opt. 47, 3203–3210 (2008).
[CrossRef]

J. Rosen, Holography, Research and Technologies (InTech, 2011).

D. C. Ghighlia and M. D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software (Wiley-Interscience, 1998).

Supplementary Material (2)

» Media 1: AVI (716 KB)     
» Media 2: AVI (174 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experiment setup for slightly off-axis dual-wavelength DHM. NF 1 , NF 2 , variable neutral filters; P 1 P 4 , linear polarizers; NPBS 1 NPBS 3 , nonpolarizing beam splitters; M 1 M 3 , mirrors; BE 1 , BE 2 , beam expanders; MO, microscope objective with magnification 50 × and numerical aperture NA = 0.55 ; L, lens. Inset, k R 1 and k R 2 are the wave vectors of the reference waves R 1 (for λ 1 ) and R 2 (for λ 2 ), respectively; k O 1 and k O 2 are the wave vectors of the object waves O 1 (for λ 1 ) and O 2 (for λ 2 ), respectively.

Fig. 2.
Fig. 2.

Experimental results of a vortex phase plate (VPP) with topological charge 2. (a) Slightly off-axis dual-wavelength hologram with orthogonal spatial frequencies; (b)–(c) extracted holograms for the red beam ( I 1 ) and the blue beam ( I 2 ), respectively; (d) Fourier spectra of ( ( I 1 α I 2 ) R Di ), the zero order is eliminated based on Eq. (4).

Fig. 3.
Fig. 3.

Reconstructed phase distribution of the VPP: (a)–(b) wrapped reconstructed phase with single red beam and blue beam, respectively, and (c) unambiguous reconstructed phase distribution with the beat wavelength.

Fig. 4.
Fig. 4.

Real-time measurement of manually translated rectangular phase step: (a) dynamic slightly off-axis dual-wavelength holograms (Media 1, avi, 730 KB); (b) the reconstructed OPD of the moving specimen (Media 2, avi, 222 KB).

Fig. 5.
Fig. 5.

Accuracy test for the proposed method compared with the standard four-step PSI method. (a) Reconstructed phase of the phase-step with the standard four-step PSI method and (b) phase profiles taken along the dashed line in Fig. 5(a) and compared with that obtained by the proposed method.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ a 1 r a 2 r a 1 g a 2 g a 1 b a 2 b ] · [ I 1 I 2 ] = [ I HR I HG I HB ] ,
[ I 1 I 2 ] = [ a 1 r 2 + a 1 g 2 + a 1 b 2 a 1 r a 2 r + a 1 g a 2 g + a 1 b a 2 b a 1 r a 2 r + a 1 g a 2 g + a 1 b a 2 b a 2 r 2 + a 2 g 2 + a 2 b 2 ] 1 [ a 1 r I HR + a 1 g I HG + a 1 b I HB a 2 r I HR + a 2 g I HG + a 2 b I HB ] .
I 1 ( x , y ) = | R 1 | 2 + | O 1 | 2 + R 1 O 1 * + R 1 * O 1 , I 2 ( x , y ) = | R 2 | 2 + | O 2 | 2 + R 2 O 2 * + R 2 * O 2 .
I 1 α I 2 = R 1 O 1 * + R 1 * O 1 α ( R 2 O 2 * + R 2 * O 2 ) .
O i ( x , y ) = IFT { FT [ ( I 1 α I 2 ) R Di ] · W i ( ξ , η ) · exp [ j 2 π d i λ i 1 λ i 2 ( ξ + M 2 Δ x 2 2 d i λ i ) M 2 Δ x 2 λ i 2 ( η + N 2 Δ y 2 2 d i λ i ) N 2 Δ y 2 ] } , ( i = 1 , 2 )
ϕ = arg ( O 1 O 2 * ) = φ 1 φ 2 = 2 π h λ 1 2 π h λ 2 = 2 π h Λ ,

Metrics