Abstract

We propose a passive polarization depolarizer to overcome the polarization noise in Brillouin optical time domain reflectometry (BOTDR). We also give a theoretical analysis of the depolarizer. The depolarizer is highly stable and has small insertion loss. It is based on a Mach–Zehnder interference scheme and mainly consists of two polarization beam splitters and a piece of delay fiber. Experimental results show that the polarization noise can be reduced by 96% by the depolarizer, and the Brillouin frequency shift induced by heat can be accurately detected by BOTDR with this depolarizer. The pulse width is 30 ns and the length of the sensing fiber is 24 km, which is the longest reported distance achieved with such a short pulse for BOTDR, to the best of our knowledge.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
    [CrossRef]
  2. K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
    [CrossRef]
  3. V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20 km distributed temperature sensor based on spontaneous Brillouin scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
    [CrossRef]
  4. Y. Sakairi, H. Uchiyama, Z. X. Li, and S. Adachi, “System for measuring temperature and strain separately by BOTDR and OTDR,” Proc. SPIE 4920, 274–284 (2002).
    [CrossRef]
  5. S. M. Maughan, H. H. Kee, and T. P. Newson, “57 km single-ended spontaneous Brillouin-based distributed fiber temperature sensor using microwave coherent detection,” Opt. Lett. 26, 331–333 (2001).
    [CrossRef]
  6. M. Song, B. Zhao, and X. Zhang, “Optical coherent detection Brillouin distributed optical fiber sensor based on orthogonal polarization diversity reception,” Chin. Opt. Lett. 3, 271–274 (2005).
  7. J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
    [CrossRef]
  8. S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thevenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
    [CrossRef]
  9. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
    [CrossRef]

2008 (1)

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[CrossRef]

2007 (1)

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thevenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[CrossRef]

2005 (1)

2002 (1)

Y. Sakairi, H. Uchiyama, Z. X. Li, and S. Adachi, “System for measuring temperature and strain separately by BOTDR and OTDR,” Proc. SPIE 4920, 274–284 (2002).
[CrossRef]

2001 (1)

2000 (1)

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20 km distributed temperature sensor based on spontaneous Brillouin scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

1997 (2)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

1994 (1)

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

Adachi, S.

Y. Sakairi, H. Uchiyama, Z. X. Li, and S. Adachi, “System for measuring temperature and strain separately by BOTDR and OTDR,” Proc. SPIE 4920, 274–284 (2002).
[CrossRef]

Chen, Z.

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[CrossRef]

Diaz, S.

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thevenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[CrossRef]

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Hathaway, M. W.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20 km distributed temperature sensor based on spontaneous Brillouin scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

Horiguchi, T.

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

Jackson, D. A.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20 km distributed temperature sensor based on spontaneous Brillouin scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

Kee, H. H.

Koyamada, Y.

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

Kurashima, T.

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

Lecoeuche, V.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20 km distributed temperature sensor based on spontaneous Brillouin scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

Li, Z. X.

Y. Sakairi, H. Uchiyama, Z. X. Li, and S. Adachi, “System for measuring temperature and strain separately by BOTDR and OTDR,” Proc. SPIE 4920, 274–284 (2002).
[CrossRef]

Lopez-Amo, M.

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thevenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[CrossRef]

Mafang, S. F.

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thevenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[CrossRef]

Maughan, S. M.

Newson, T. P.

Ng, J.

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[CrossRef]

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Pannell, C. N.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20 km distributed temperature sensor based on spontaneous Brillouin scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

Parker, T. R.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

Sakairi, Y.

Y. Sakairi, H. Uchiyama, Z. X. Li, and S. Adachi, “System for measuring temperature and strain separately by BOTDR and OTDR,” Proc. SPIE 4920, 274–284 (2002).
[CrossRef]

Shimizu, K.

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

Song, M.

Thevenaz, L.

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thevenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Uchiyama, H.

Y. Sakairi, H. Uchiyama, Z. X. Li, and S. Adachi, “System for measuring temperature and strain separately by BOTDR and OTDR,” Proc. SPIE 4920, 274–284 (2002).
[CrossRef]

Webb, D. J.

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20 km distributed temperature sensor based on spontaneous Brillouin scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

Yang, J.

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[CrossRef]

Yang, X.

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[CrossRef]

Yu, C.

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[CrossRef]

Zhang, X.

Zhao, B.

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (2)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979–981 (1997).
[CrossRef]

V. Lecoeuche, M. W. Hathaway, D. J. Webb, C. N. Pannell, and D. A. Jackson, “20 km distributed temperature sensor based on spontaneous Brillouin scattering,” IEEE Photon. Technol. Lett. 12, 1367–1369 (2000).
[CrossRef]

J. Lightwave Technol. (2)

K. Shimizu, T. Horiguchi, Y. Koyamada, and T. Kurashima, “Coherent self-heterodyne Brillouin OTDR for measurement of Brillouin frequency shift distribution in optical fibers,” J. Lightwave Technol. 12, 730–736 (1994).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842–1851 (1997).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (3)

J. Yang, C. Yu, Z. Chen, J. Ng, and X. Yang, “Suppression of polarization sensitivity in BOTDA fiber distributed sensing system,” Proc. SPIE 7004, 700421 (2008).
[CrossRef]

S. Diaz, S. F. Mafang, M. Lopez-Amo, and L. Thevenaz, “High performance Brillouin distributed fibre sensor,” Proc. SPIE 6619, 661938 (2007).
[CrossRef]

Y. Sakairi, H. Uchiyama, Z. X. Li, and S. Adachi, “System for measuring temperature and strain separately by BOTDR and OTDR,” Proc. SPIE 4920, 274–284 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic configuration of the polarization depolarizer. PBS, polarization beam splitter; PMF, polarization-maintaining fiber.

Fig. 2.
Fig. 2.

Experimental configuration. EOM, electro-optic modulator; EDFA, erbium-doped fiber amplifier; PC, polarization controller; SMF, single-mode fiber.

Fig. 3.
Fig. 3.

Spatial distribution of Brillouin scattering signal along the fiber. Three-dimensional profiles (a) with and (b) without the depolarizer. and Distributions of the Brillouin frequency shift for 10.860 GHz (c) with and (d) without the depolarizer.

Fig. 4.
Fig. 4.

Distribution of Brillouin frequency shift along the fiber. The inset is the enlarged profile of the distribution around the heated section.

Fig. 5.
Fig. 5.

(a) Brillouin spectrum along the fiber and (b) the distribution of Brillouin frequency shift around the heated section.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E0=E0exp(i2πν0t)(po(1p02)1/2exp(iδϕ0)),
EB=EBexp(i2πνBt)(pB(1pB2)1/2exp(iδϕB)),
E=E0+EB.
I=EE,
I=E02+EB2+2E0EBp0pBcos[2π(ν0νB)t]+2E0EB(1p02)1/2(1pB2)1/2cos[2π(ν0νB)t+(δϕ0δϕB)].
idet=ηehνsI=ηehνs{E02+EB2+2E0EBp0pBcos[2π(ν0νB)t]+2E0EB(1p02)1/2(1pB2)1/2cos[2π(ν0νB)t+(δϕ0δϕB)]},
idet_ac=A·cos[2π(ν0νB)t+θ],
A=ηehνs·2E0EB[1+2p02pB2p02pB2+2p0pB(1p02)1/2(1pB2)1/2cosΔϕ]1/2,
PrfA2=(ηehνs)2·4E02EB2[1+2p02pB2p02pB2+2p0pB(1p02)1/2(1pB2)1/2cosΔϕ].
Prf(l)(ηehνs)2·4E02EB2{1+2p02pB2(l)p02pB2(l)+2p0pB(l)(1p02)1/2[1pB2(l)]1/2cosΔϕ(l)}.
2p02pB2(l)pB2(l)=0.

Metrics