Abstract

With the reconfiguration technique, users can configure the optical processor of a new optical computing platform, the ternary optical computer (TOC), into 42 specific basic operation units, and reconfigure it when the computation is completed. A simulative method of software for this technique is proposed in this paper. Also, an elaborate experiment based on this software is discussed. This simulation of reconfiguration demonstrates that the theory of reconfiguring optical processor in TOC is valid and also lays the foundation for the hardware implementation of the reconfiguration technique.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Guo, S. J. Yue, X. L. Wang, J. P. Ding, and H. T. Wang, “Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display,” Appl. Opt. 49, 1069–1074 (2010).
    [CrossRef]
  2. J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt. 44, 4049–4052 (2005).
    [CrossRef]
  3. I. Moreno, J. A. Davis, F. A. Klein, and M. J. Mitry, “Polarization-splitting common-path interferometer based on a zero-twist liquid crystal display,” Appl. Opt. 47, 1797–1801 (2008).
    [CrossRef]
  4. C. Y. Chung, K. C. Cho, C. C. Chang, C. H. Lin, W. C. Yen, and S. J. Chen, “Adaptive-optics system with liquid-crystal phase-shift interferometer,” Appl. Opt. 45, 3409–3414 (2006).
    [CrossRef]
  5. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
    [CrossRef]
  6. M. E. Caldwell and E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880–3891 (1992).
    [CrossRef]
  7. E. G. Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008).
    [CrossRef]
  8. A. H. Khan and U. R. Nejib, “Optical logic gates employing liquid crystal optical switches,” Appl. Opt. 26, 270–273 (1987).
    [CrossRef]
  9. M. T. Fatehi, K. C. Wasmundt, and S. A. Collins, “Optical flip-flops and sequential logic circuits using a liquid crystal light valve,” Appl. Opt. 23, 2163–2171 (1984).
    [CrossRef]
  10. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587–589 (2001).
    [CrossRef]
  11. F. Gori, “Measuring Stokes parameters by means of a polarization grating,” Opt. Lett. 24, 584–586 (1999).
    [CrossRef]
  12. Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
    [CrossRef]
  13. Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Phys. Scr. T118, 98–101 (2005).
    [CrossRef]
  14. Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
    [CrossRef]
  15. Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011).
    [CrossRef]
  16. Y. Jin, H. C. He, and L. R. Ai, “Lane of parallel through carry in ternary optical adder,” Sci. China Ser. F 48, 107–116(2005).
    [CrossRef]
  17. J. Y. Yan, Y. Jin, and K. Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426 (2008).
    [CrossRef]
  18. X. C. Wang, J. J. Peng, and S. Ouyang, “Control method for the optical components of a dynamically reconfigurable optical platform,” Appl. Opt. 50, 662–670 (2011).
    [CrossRef]
  19. Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 7282, 72823I (2009).
    [CrossRef]
  20. Y. Jin, “Management strategy of data bits in ternary optical computer,” Journal of Shanghai University (Natural Science Edition) 13, 519–523 (2007) (in Chinese).
  21. S. F. Li and Y. Jin, “Mapping technology from components pixels to data-bits of ternary optical computer,” Comput. Eng. Design 31, 1077–1080 (2010).
  22. X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362 (2010).
    [CrossRef]
  23. L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.
  24. D. Casasent and P. Woodford, “Symbolic substitution modified signed-digit optical adder,” Appl. Opt. 33, 1498–1506 (1994).
    [CrossRef]
  25. A. K. Cherri and M. S. Alam, “Algorithms for optoelectronic implementation of modified signed-digit division, square-root, logarithmic, and exponential functions,” Appl. Opt. 40, 1236–1243 (2001).
    [CrossRef]
  26. A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10, 389–400 (1961).
    [CrossRef]
  27. Z. Y. Shen, “Theory, architecture, and implementation of thousand-trit ternary optical processor,” Ph.D. dissertation (Shanghai University, 2010) (in Chinese).
  28. S. B. Liu, Y. Jin, J. J. Peng, and M. Li, “The response time measurement system of optical computer component,” in International Conference on Information Engineering and Computer Science (IEEE Computer Society, 2009), pp. 1986–1990.

2011 (2)

Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011).
[CrossRef]

X. C. Wang, J. J. Peng, and S. Ouyang, “Control method for the optical components of a dynamically reconfigurable optical platform,” Appl. Opt. 50, 662–670 (2011).
[CrossRef]

2010 (4)

C. S. Guo, S. J. Yue, X. L. Wang, J. P. Ding, and H. T. Wang, “Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display,” Appl. Opt. 49, 1069–1074 (2010).
[CrossRef]

X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362 (2010).
[CrossRef]

Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

S. F. Li and Y. Jin, “Mapping technology from components pixels to data-bits of ternary optical computer,” Comput. Eng. Design 31, 1077–1080 (2010).

2009 (1)

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 7282, 72823I (2009).
[CrossRef]

2008 (3)

2007 (1)

Y. Jin, “Management strategy of data bits in ternary optical computer,” Journal of Shanghai University (Natural Science Edition) 13, 519–523 (2007) (in Chinese).

2006 (1)

2005 (3)

J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt. 44, 4049–4052 (2005).
[CrossRef]

Y. Jin, H. C. He, and L. R. Ai, “Lane of parallel through carry in ternary optical adder,” Sci. China Ser. F 48, 107–116(2005).
[CrossRef]

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Phys. Scr. T118, 98–101 (2005).
[CrossRef]

2003 (1)

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

2001 (2)

2000 (1)

1999 (1)

1994 (1)

1992 (1)

1987 (1)

1984 (1)

1961 (1)

A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10, 389–400 (1961).
[CrossRef]

Adachi, J.

Ai, L. R.

Y. Jin, H. C. He, and L. R. Ai, “Lane of parallel through carry in ternary optical adder,” Sci. China Ser. F 48, 107–116(2005).
[CrossRef]

Alam, M. S.

Avizienis, A.

A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10, 389–400 (1961).
[CrossRef]

Caldwell, M. E.

Casasent, D.

Chang, C. C.

Chen, S. J.

Cherri, A. K.

Cho, K. C.

Chung, C. Y.

Collins, S. A.

Cottrell, D. M.

Davis, J. A.

Ding, G. T.

Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Ding, J. P.

Evans, G. H.

Fatehi, M. T.

Fernández-Pousa, C. R.

Gori, F.

Guo, C. S.

He, H. C.

Y. Jin, H. C. He, and L. R. Ai, “Lane of parallel through carry in ternary optical adder,” Sci. China Ser. F 48, 107–116(2005).
[CrossRef]

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Phys. Scr. T118, 98–101 (2005).
[CrossRef]

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

Jin, Y.

Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011).
[CrossRef]

Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

S. F. Li and Y. Jin, “Mapping technology from components pixels to data-bits of ternary optical computer,” Comput. Eng. Design 31, 1077–1080 (2010).

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 7282, 72823I (2009).
[CrossRef]

J. Y. Yan, Y. Jin, and K. Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426 (2008).
[CrossRef]

Y. Jin, “Management strategy of data bits in ternary optical computer,” Journal of Shanghai University (Natural Science Edition) 13, 519–523 (2007) (in Chinese).

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Phys. Scr. T118, 98–101 (2005).
[CrossRef]

Y. Jin, H. C. He, and L. R. Ai, “Lane of parallel through carry in ternary optical adder,” Sci. China Ser. F 48, 107–116(2005).
[CrossRef]

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

S. B. Liu, Y. Jin, J. J. Peng, and M. Li, “The response time measurement system of optical computer component,” in International Conference on Information Engineering and Computer Science (IEEE Computer Society, 2009), pp. 1986–1990.

Khan, A. H.

Klein, F. A.

Li, M.

X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362 (2010).
[CrossRef]

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

S. B. Liu, Y. Jin, J. J. Peng, and M. Li, “The response time measurement system of optical computer component,” in International Conference on Information Engineering and Computer Science (IEEE Computer Society, 2009), pp. 1986–1990.

Li, S. F.

S. F. Li and Y. Jin, “Mapping technology from components pixels to data-bits of ternary optical computer,” Comput. Eng. Design 31, 1077–1080 (2010).

Lin, C. H.

Liu, S. B.

S. B. Liu, Y. Jin, J. J. Peng, and M. Li, “The response time measurement system of optical computer component,” in International Conference on Information Engineering and Computer Science (IEEE Computer Society, 2009), pp. 1986–1990.

Liu, X. M.

Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011).
[CrossRef]

Lü, Y. T.

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Phys. Scr. T118, 98–101 (2005).
[CrossRef]

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

McNamara, D. E.

Mitry, M. J.

Moreno, I.

Mosk, A. P.

Nejib, U. R.

Ouyang, S.

Peng, J. J.

Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011).
[CrossRef]

X. C. Wang, J. J. Peng, and S. Ouyang, “Control method for the optical components of a dynamically reconfigurable optical platform,” Appl. Opt. 50, 662–670 (2011).
[CrossRef]

Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362 (2010).
[CrossRef]

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 7282, 72823I (2009).
[CrossRef]

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

S. B. Liu, Y. Jin, J. J. Peng, and M. Li, “The response time measurement system of optical computer component,” in International Conference on Information Engineering and Computer Science (IEEE Computer Society, 2009), pp. 1986–1990.

Putten, E. G.

Shen, Y. F.

Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011).
[CrossRef]

Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Shen, Z. Y.

X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362 (2010).
[CrossRef]

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 7282, 72823I (2009).
[CrossRef]

Z. Y. Shen, “Theory, architecture, and implementation of thousand-trit ternary optical processor,” Ph.D. dissertation (Shanghai University, 2010) (in Chinese).

Sonehara, T.

Teng, L.

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

Vellekoop, I. M.

Wang, H. J.

Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011).
[CrossRef]

Wang, H. T.

Wang, X. C.

Wang, X. L.

Wasmundt, K. C.

Woodford, P.

Xu, S. Y.

Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Yan, J. Y.

J. Y. Yan, Y. Jin, and K. Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426 (2008).
[CrossRef]

Yeatman, E. M.

Yen, W. C.

You, H. H.

Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Yue, D. J.

Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Yue, S. J.

Zhou, Y.

Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011).
[CrossRef]

Zuo, K. Z.

J. Y. Yan, Y. Jin, and K. Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426 (2008).
[CrossRef]

Appl. Opt. (13)

M. T. Fatehi, K. C. Wasmundt, and S. A. Collins, “Optical flip-flops and sequential logic circuits using a liquid crystal light valve,” Appl. Opt. 23, 2163–2171 (1984).
[CrossRef]

A. H. Khan and U. R. Nejib, “Optical logic gates employing liquid crystal optical switches,” Appl. Opt. 26, 270–273 (1987).
[CrossRef]

M. E. Caldwell and E. M. Yeatman, “Surface-plasmon spatial light modulators based on liquid crystal,” Appl. Opt. 31, 3880–3891 (1992).
[CrossRef]

D. Casasent and P. Woodford, “Symbolic substitution modified signed-digit optical adder,” Appl. Opt. 33, 1498–1506 (1994).
[CrossRef]

J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, “Two-dimensional polarization encoding with a phase-only liquid-crystal spatial light modulator,” Appl. Opt. 39, 1549–1554 (2000).
[CrossRef]

A. K. Cherri and M. S. Alam, “Algorithms for optoelectronic implementation of modified signed-digit division, square-root, logarithmic, and exponential functions,” Appl. Opt. 40, 1236–1243 (2001).
[CrossRef]

J. A. Davis, G. H. Evans, and I. Moreno, “Polarization-multiplexed diffractive optical elements with liquid-crystal displays,” Appl. Opt. 44, 4049–4052 (2005).
[CrossRef]

C. Y. Chung, K. C. Cho, C. C. Chang, C. H. Lin, W. C. Yen, and S. J. Chen, “Adaptive-optics system with liquid-crystal phase-shift interferometer,” Appl. Opt. 45, 3409–3414 (2006).
[CrossRef]

I. Moreno, J. A. Davis, F. A. Klein, and M. J. Mitry, “Polarization-splitting common-path interferometer based on a zero-twist liquid crystal display,” Appl. Opt. 47, 1797–1801 (2008).
[CrossRef]

E. G. Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008).
[CrossRef]

C. S. Guo, S. J. Yue, X. L. Wang, J. P. Ding, and H. T. Wang, “Polarization-selective diffractive optical elements with a twisted-nematic liquid-crystal display,” Appl. Opt. 49, 1069–1074 (2010).
[CrossRef]

X. C. Wang, J. J. Peng, M. Li, Z. Y. Shen, and S. Ouyang, “Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform,” Appl. Opt. 49, 2352–2362 (2010).
[CrossRef]

X. C. Wang, J. J. Peng, and S. Ouyang, “Control method for the optical components of a dynamically reconfigurable optical platform,” Appl. Opt. 50, 662–670 (2011).
[CrossRef]

Comput. Eng. Design (1)

S. F. Li and Y. Jin, “Mapping technology from components pixels to data-bits of ternary optical computer,” Comput. Eng. Design 31, 1077–1080 (2010).

IRE Trans. Electron. Comput. (1)

A. Avizienis, “Signed-digit number representations for fast parallel arithmetic,” IRE Trans. Electron. Comput. EC-10, 389–400 (1961).
[CrossRef]

Journal of Shanghai University (Natural Science Edition) (1)

Y. Jin, “Management strategy of data bits in ternary optical computer,” Journal of Shanghai University (Natural Science Edition) 13, 519–523 (2007) (in Chinese).

Opt. Lett. (2)

Phys. Scr. (1)

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Phys. Scr. T118, 98–101 (2005).
[CrossRef]

Proc. SPIE (1)

Z. Y. Shen, Y. Jin, and J. J. Peng, “Experimental system of ternary logic optical computer with reconfigurability,” Proc. SPIE 7282, 72823I (2009).
[CrossRef]

Sci. China Ser. F (5)

Y. Jin, H. C. He, and Y. T. Lü, “Ternary optical computer principle,” Sci. China Ser. F 46, 145–150 (2003).
[CrossRef]

Y. Jin, Y. F. Shen, J. J. Peng, S. Y. Xu, G. T. Ding, D. J. Yue, and H. H. You, “Principle and construction of MSD adder in ternary optical computer,” Sci. China Ser. F 53, 2159–2168 (2010).
[CrossRef]

Y. Jin, H. J. Wang, S. Ouyang, Y. Zhou, Y. F. Shen, J. J. Peng, and X. M. Liu, “Principles, structures, and implementation of reconfigurable ternary optical processors,” Sci. China Ser. F 54, 2236–2246 (2011).
[CrossRef]

Y. Jin, H. C. He, and L. R. Ai, “Lane of parallel through carry in ternary optical adder,” Sci. China Ser. F 48, 107–116(2005).
[CrossRef]

J. Y. Yan, Y. Jin, and K. Z. Zuo, “Decrease-radix design principle for carrying/borrowing free multi-valued and application in ternary optical computer,” Sci. China Ser. F 51, 1415–1426 (2008).
[CrossRef]

Other (3)

L. Teng, J. J. Peng, Y. Jin, and M. Li, “A cellular automata calculation model based on ternary optical computer,” in Proceedings of the 2nd International Conference on High Performance Computing and Applications (HPCA2009) (Springer, 2009), pp. 377–383.

Z. Y. Shen, “Theory, architecture, and implementation of thousand-trit ternary optical processor,” Ph.D. dissertation (Shanghai University, 2010) (in Chinese).

S. B. Liu, Y. Jin, J. J. Peng, and M. Li, “The response time measurement system of optical computer component,” in International Conference on Information Engineering and Computer Science (IEEE Computer Society, 2009), pp. 1986–1990.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Structure of a reconfigurable BOU.

Fig. 2.
Fig. 2.

Model flow chart of the optical computing process.

Fig. 3.
Fig. 3.

Results of the VV area displayed on a PC.

Fig. 4.
Fig. 4.

Results of the VV area in the reconfigurable optical platform.

Tables (4)

Tables Icon

Table 1. Forty-Two Basic Operation Units

Tables Icon

Table 2. Reconfiguration Information Table

Tables Icon

Table 3. Truth Table of T Transformation and W Transformation

Tables Icon

Table 4. Reconfiguration Information Tables of T transformation and W Transformation

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

combined byte=(odd byte&0×55)|(even byte&0×aa).

Metrics