Abstract

Flight safety in all weather conditions demands exact and reliable determination of flight-critical air parameters. Air speed, temperature, density, and pressure are essential for aircraft control. Conventional air data systems can be impacted by probe failure caused by mechanical damage from hail, volcanic ash, and icing. While optical air speed measurement methods have been discussed elsewhere, in this paper, a new concept for optically measuring the air temperature, density, pressure, moisture, and particle backscatter is presented, being independent on assumptions on the atmospheric state and eliminating the drawbacks of conventional aircraft probes by providing a different measurement principle. The concept is based on a laser emitting laser pulses into the atmosphere through a window and detecting the signals backscattered from a fixed region just outside the disturbed area of the fuselage flows. With four receiver channels, different spectral portions of the backscattered light are extracted. The measurement principle of air temperature and density is based on extracting two signals out of the rotational Raman (RR) backscatter signal of air molecules. For measuring the water vapor mixing ratio—and thus the density of the moist air—a water vapor Raman channel is included. The fourth channel serves to detect the elastic backscatter signal, which is essential for extending the measurements into clouds. This channel contributes to the detection of aerosols, which is interesting for developing a future volcanic ash warning system for aircraft. Detailed and realistic optimization and performance calculations have been performed based on the parameters of a first prototype of such a measurement system. The impact and correction of systematic error sources, such as solar background at daytime and elastic signal cross talk appearing in optically dense clouds, have been investigated. The results of the simulations show the high potential of the proposed system for reliable operation in different atmospheric conditions. Based on a laser emitting pulses at a wavelength of 532 nm with 200 mJ pulse energy, the expected measurement precisions (1σ statistical uncertainty) are <0.6K for temperature, <0.3% for density, and <0.4% for pressure for the detection of a single laser pulse at a flight altitude of 13,000 m at daytime. The errors will be smaller during nighttime or at lower altitudes. Even in optically very dense clouds with backscatter ratios of 10,000 and RR filters suppressing the elastic backscatter by 6 orders of magnitude, total errors of <1.4K, <0.4%, and <0.9%, are expected, respectively. The calculations show that aerospace accuracy standards will be met with even lower pulse energies of 75 mJ for pressure and 18 mJ for temperature measurements when the backscatter signals of 10 laser pulses are averaged. Using laser sources at 355 nm will lead to a further reduction of the necessary pulse energies by more than a factor of 3.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Moir and A. Seabridge, Civil Avionics Systems (Professional Engineering Publishing, 2003).
  2. N. Cézard, A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar,” Appl. Opt. 48, 2321–2332(2009).
    [CrossRef]
  3. H. W. Jentink and R. K. Bogue, “Optical air flow measurements for flight tests and flight testing optical flow meters,” NLR-TP-2005-256, Nationaal Lucht- en Ruimtevaartlaboratorium, 2005.
  4. C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
    [CrossRef]
  5. N. P. Schmitt, W. Rehm, T. Pistner, H. Diehl, P. Navé, and G. J. Rabadan, “A340 flight test results of a direct detection onboard UV LIDAR in forward-looking turbulence measurement configuration,” in Proceedings of the 15th Coherent Laser Radar Conference CLRC(Curran Associates Inc., 2009), pp. 173–176.
  6. G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
    [CrossRef]
  7. NESLIE project, retrieved March2011, http://www.neslie-fp6.org .
  8. DANIELA project, retrieved March2011, http://www.danielaproject.eu .
  9. J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
    [CrossRef]
  10. J. Cooney and M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).
    [CrossRef]
  11. G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
    [CrossRef]
  12. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
    [CrossRef]
  13. Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
    [CrossRef]
  14. J. Zeyn, W. Lahmann, and C. Weitkamp, “Remote daytime measurements of tropospheric temperature profiles with a rotational Raman lidar,” Opt. Lett. 21, 1301–1303 (1996).
    [CrossRef]
  15. Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer,” Appl. Opt. 44, 3593–3603 (2005).
    [CrossRef]
  16. A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
    [CrossRef]
  17. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
    [CrossRef]
  18. A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
    [CrossRef]
  19. P. Girolamo, R. Marchese, D. N. Whiteman, and B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).
    [CrossRef]
  20. M. Radlach, “A scanning eye-safe rotational Raman lidar in the ultraviolet for measurements of tropospheric temperature fields,” Ph.D. dissertation (University of Hohenheim, 2008).
  21. M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
    [CrossRef]
  22. A. Behrendt, “Fernmessung atmosphärischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” Ph.D. thesis (University of Hamburg, 2000).
  23. E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
    [CrossRef]
  24. A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
    [CrossRef]
  25. A. T. Young and G. W. Kattawar, “Rayleigh-scattering line-profiles,” Appl. Opt. 22, 3668–3670 (1983).
    [CrossRef]
  26. R. M. Measures, Laser Remote Sensing (Wiley & Sons, 1984).
  27. U. Wandinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed., Springer Series in Optical Sciences (Springer, 2005), Vol. 102, pp. 241–271.
  28. G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Molec. Spectrosc. 228, 38–65 (2004).
    [CrossRef]
  29. J. Gelbwachs and M. Birnbaum, “Fluorescence of atmospheric aerosols and lidar implications,” Appl. Opt. 12, 2442–2447 (1973).
    [CrossRef]
  30. T. Kitada, A. Hori, T. Taira, and T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, 1994), pp. 567–568.
  31. A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed., Springer Series in Optical Sciences (Springer, 2005), Vol. 102, pp. 273–305.
  32. A. Bucholtz, “Rayleigh scattering calculations for the terrestial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
    [CrossRef]
  33. M. Fraczek, “Optical air data system for aircraft control based on analyzing Raman- and elastically backscattered laser light,” Ph.D. thesis (University of Hohenheim, in preparation).
  34. A. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20, 1527–1532(1981).
    [CrossRef]
  35. G. Avila, G. Tejeda, J. M. Fernandez, and S. Montero, “The rotational Raman spectra and cross sections of H2O, D2O, and HDO,” J. Molec. Spectrosc. 220, 259–275 (2003).
    [CrossRef]
  36. J. Gasteiger, S. Gross, V. Freudenthaler, and M. Wiegner, “Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements,” Atmos. Chem. Phys. 11, 2209–2223 (2011).
    [CrossRef]
  37. H. M. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, 1986).
  38. International Civil Aviation Organization, International Standard Atmosphere (ISA), retrieved March2011, http://www.icao.int .
  39. M. Fraczek, A. Behrendt, and N. Schmitt, “Optical air temperature and density measurement system for aircraft using elastic and Raman backscattering of laser light,” Proc. SPIE 7835, 78350D (2010).
    [CrossRef]
  40. libRadtran publication list, retrieved March2011, http://www.libradtran.org/doku.php?id=publications .
  41. The Engineering Society for Advancing Mobility Land Sea Air and Space, Aerospace Standard AS8002: Air data computer—minimum performance standard, http://standards.sae.org/as8002a/.
  42. BGV B2—Unfallverhütungsvorschrift Laserstrahlung (Berufsgenossenschaft Elektro Textil Feinmechanik, April1, 1988 as amended on January1, 1997 with implementation instructions from October1995 updated edition April2007).
  43. S. Wuttke and G. Seckmeyer, “Spectral radiance and sky luminance in Antarctica: a case study,” Theor. Appl. Climatol. 85, 131–148 (2006).
    [CrossRef]
  44. J. P. F. Fortuin and H. Kelder, “An ozone climatology based on ozonesonde and satellite measurements,” J. Geophys. Res. 103, 31709–31734 (1998).
    [CrossRef]
  45. J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995).
    [CrossRef]
  46. G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed., Springer Series in Optical Sciences (Springer-Verlag, 1999), Vol. 64.
  47. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley & Sons, 2004).
  48. J. Wilson and J. F. B. Hawkes, Optoelectronics: An Introduction (Prentice-Hall International, 1983).
  49. C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge Univ. Press, 1996).
  50. J. Graeme, Photodiode Amplifiers: OP AMP Solutions (McGraw-Hill, 1995).

2011

J. Gasteiger, S. Gross, V. Freudenthaler, and M. Wiegner, “Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements,” Atmos. Chem. Phys. 11, 2209–2223 (2011).
[CrossRef]

2010

M. Fraczek, A. Behrendt, and N. Schmitt, “Optical air temperature and density measurement system for aircraft using elastic and Raman backscattering of laser light,” Proc. SPIE 7835, 78350D (2010).
[CrossRef]

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[CrossRef]

2009

2008

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

2006

S. Wuttke and G. Seckmeyer, “Spectral radiance and sky luminance in Antarctica: a case study,” Theor. Appl. Climatol. 85, 131–148 (2006).
[CrossRef]

2005

2004

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
[CrossRef]

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Molec. Spectrosc. 228, 38–65 (2004).
[CrossRef]

P. Girolamo, R. Marchese, D. N. Whiteman, and B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).
[CrossRef]

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

2003

G. Avila, G. Tejeda, J. M. Fernandez, and S. Montero, “The rotational Raman spectra and cross sections of H2O, D2O, and HDO,” J. Molec. Spectrosc. 220, 259–275 (2003).
[CrossRef]

2002

2000

1998

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

J. P. F. Fortuin and H. Kelder, “An ozone climatology based on ozonesonde and satellite measurements,” J. Geophys. Res. 103, 31709–31734 (1998).
[CrossRef]

1996

1995

A. Bucholtz, “Rayleigh scattering calculations for the terrestial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[CrossRef]

J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995).
[CrossRef]

1993

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef]

1983

1981

A. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20, 1527–1532(1981).
[CrossRef]

A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
[CrossRef]

1976

1973

1972

J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Althausen, D.

Ansmann, A.

Arshinov, Y.

Arshinov, Y. F.

Avila, G.

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Molec. Spectrosc. 228, 38–65 (2004).
[CrossRef]

G. Avila, G. Tejeda, J. M. Fernandez, and S. Montero, “The rotational Raman spectra and cross sections of H2O, D2O, and HDO,” J. Molec. Spectrosc. 220, 259–275 (2003).
[CrossRef]

Baumgart, R.

Behrendt, A.

M. Fraczek, A. Behrendt, and N. Schmitt, “Optical air temperature and density measurement system for aircraft using elastic and Raman backscattering of laser light,” Proc. SPIE 7835, 78350D (2010).
[CrossRef]

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
[CrossRef]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed., Springer Series in Optical Sciences (Springer, 2005), Vol. 102, pp. 273–305.

A. Behrendt, “Fernmessung atmosphärischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” Ph.D. thesis (University of Hamburg, 2000).

Birnbaum, M.

Bobrovnikov, S.

Bobrovnikov, S. M.

Bogue, R. K.

H. W. Jentink and R. K. Bogue, “Optical air flow measurements for flight tests and flight testing optical flow meters,” NLR-TP-2005-256, Nationaal Lucht- en Ruimtevaartlaboratorium, 2005.

Brion, J.

J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995).
[CrossRef]

Browell, E. V.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Bucholtz, A.

Buck, A.

A. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20, 1527–1532(1981).
[CrossRef]

Cézard, N.

Chakir, A.

J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995).
[CrossRef]

Chanin, M. L.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Charbonnier, J.

J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995).
[CrossRef]

Cooney, J.

Cooney, J. A.

J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

Daumont, D.

J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995).
[CrossRef]

Davis, C. C.

C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge Univ. Press, 1996).

Dehring, M. T.

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

Demoz, B.

P. Girolamo, R. Marchese, D. N. Whiteman, and B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).
[CrossRef]

Diehl, H.

N. P. Schmitt, W. Rehm, T. Pistner, H. Diehl, P. Navé, and G. J. Rabadan, “A340 flight test results of a direct detection onboard UV LIDAR in forward-looking turbulence measurement configuration,” in Proceedings of the 15th Coherent Laser Radar Conference CLRC(Curran Associates Inc., 2009), pp. 173–176.

Dmitriev, V. G.

G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed., Springer Series in Optical Sciences (Springer-Verlag, 1999), Vol. 64.

Dolfi-Bouteyre, A.

Eichinger, W. E.

V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley & Sons, 2004).

Fernandez, J. M.

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Molec. Spectrosc. 228, 38–65 (2004).
[CrossRef]

G. Avila, G. Tejeda, J. M. Fernandez, and S. Montero, “The rotational Raman spectra and cross sections of H2O, D2O, and HDO,” J. Molec. Spectrosc. 220, 259–275 (2003).
[CrossRef]

Flamant, P. H.

Fortuin, J. P. F.

J. P. F. Fortuin and H. Kelder, “An ozone climatology based on ozonesonde and satellite measurements,” J. Geophys. Res. 103, 31709–31734 (1998).
[CrossRef]

Fraczek, M.

M. Fraczek, A. Behrendt, and N. Schmitt, “Optical air temperature and density measurement system for aircraft using elastic and Raman backscattering of laser light,” Proc. SPIE 7835, 78350D (2010).
[CrossRef]

M. Fraczek, “Optical air data system for aircraft control based on analyzing Raman- and elastically backscattered laser light,” Ph.D. thesis (University of Hohenheim, in preparation).

Freudenthaler, V.

J. Gasteiger, S. Gross, V. Freudenthaler, and M. Wiegner, “Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements,” Atmos. Chem. Phys. 11, 2209–2223 (2011).
[CrossRef]

Gasteiger, J.

J. Gasteiger, S. Gross, V. Freudenthaler, and M. Wiegner, “Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements,” Atmos. Chem. Phys. 11, 2209–2223 (2011).
[CrossRef]

Gelbwachs, J.

Girolamo, P.

P. Girolamo, R. Marchese, D. N. Whiteman, and B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).
[CrossRef]

Graeme, J.

J. Graeme, Photodiode Amplifiers: OP AMP Solutions (McGraw-Hill, 1995).

Grant, W. B.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Gross, S.

J. Gasteiger, S. Gross, V. Freudenthaler, and M. Wiegner, “Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements,” Atmos. Chem. Phys. 11, 2209–2223 (2011).
[CrossRef]

Gurzadyan, G. G.

G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed., Springer Series in Optical Sciences (Springer-Verlag, 1999), Vol. 64.

Hauchecorne, A.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Hawkes, J. F. B.

J. Wilson and J. F. B. Hawkes, Optoelectronics: An Introduction (Prentice-Hall International, 1983).

Hays, P. B.

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

Hori, A.

T. Kitada, A. Hori, T. Taira, and T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, 1994), pp. 567–568.

Huignard, J.-P.

Ismail, S.

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Jentink, H. W.

H. W. Jentink and R. K. Bogue, “Optical air flow measurements for flight tests and flight testing optical flow meters,” NLR-TP-2005-256, Nationaal Lucht- en Ruimtevaartlaboratorium, 2005.

Kattawar, G. W.

Kelder, H.

J. P. F. Fortuin and H. Kelder, “An ozone climatology based on ozonesonde and satellite measurements,” J. Geophys. Res. 103, 31709–31734 (1998).
[CrossRef]

Kitada, T.

T. Kitada, A. Hori, T. Taira, and T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, 1994), pp. 567–568.

Kobayashi, T.

T. Kitada, A. Hori, T. Taira, and T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, 1994), pp. 567–568.

Kovalev, V. A.

V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley & Sons, 2004).

Lahmann, W.

Macleod, H. M.

H. M. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, 1986).

Malicet, J.

J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995).
[CrossRef]

Marchese, R.

P. Girolamo, R. Marchese, D. N. Whiteman, and B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).
[CrossRef]

Mattis, I.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley & Sons, 1984).

Mitev, V.

Mitev, V. M.

Moir, I.

I. Moir and A. Seabridge, Civil Avionics Systems (Professional Engineering Publishing, 2003).

Montero, S.

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Molec. Spectrosc. 228, 38–65 (2004).
[CrossRef]

G. Avila, G. Tejeda, J. M. Fernandez, and S. Montero, “The rotational Raman spectra and cross sections of H2O, D2O, and HDO,” J. Molec. Spectrosc. 220, 259–275 (2003).
[CrossRef]

Müller, D.

Nakamura, T.

Nardell, C. A.

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

Navé, P.

N. P. Schmitt, W. Rehm, T. Pistner, H. Diehl, P. Navé, and G. J. Rabadan, “A340 flight test results of a direct detection onboard UV LIDAR in forward-looking turbulence measurement configuration,” in Proceedings of the 15th Coherent Laser Radar Conference CLRC(Curran Associates Inc., 2009), pp. 173–176.

Nedeljkovic, D.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

Nikogosyan, D. N.

G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed., Springer Series in Optical Sciences (Springer-Verlag, 1999), Vol. 64.

Onishi, M.

Parisse, C.

J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995).
[CrossRef]

Pepler, S. J.

Pina, M.

Pistner, T.

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[CrossRef]

N. P. Schmitt, W. Rehm, T. Pistner, H. Diehl, P. Navé, and G. J. Rabadan, “A340 flight test results of a direct detection onboard UV LIDAR in forward-looking turbulence measurement configuration,” in Proceedings of the 15th Coherent Laser Radar Conference CLRC(Curran Associates Inc., 2009), pp. 173–176.

Rabadan, G. J.

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[CrossRef]

N. P. Schmitt, W. Rehm, T. Pistner, H. Diehl, P. Navé, and G. J. Rabadan, “A340 flight test results of a direct detection onboard UV LIDAR in forward-looking turbulence measurement configuration,” in Proceedings of the 15th Coherent Laser Radar Conference CLRC(Curran Associates Inc., 2009), pp. 173–176.

Radlach, M.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

M. Radlach, “A scanning eye-safe rotational Raman lidar in the ultraviolet for measurements of tropospheric temperature fields,” Ph.D. dissertation (University of Hohenheim, 2008).

Rehm, W.

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[CrossRef]

N. P. Schmitt, W. Rehm, T. Pistner, H. Diehl, P. Navé, and G. J. Rabadan, “A340 flight test results of a direct detection onboard UV LIDAR in forward-looking turbulence measurement configuration,” in Proceedings of the 15th Coherent Laser Radar Conference CLRC(Curran Associates Inc., 2009), pp. 173–176.

Reichardt, J.

Richey, C. J.

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

Ritter, G. A.

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

Schmitt, N.

M. Fraczek, A. Behrendt, and N. Schmitt, “Optical air temperature and density measurement system for aircraft using elastic and Raman backscattering of laser light,” Proc. SPIE 7835, 78350D (2010).
[CrossRef]

Schmitt, N. P.

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[CrossRef]

N. P. Schmitt, W. Rehm, T. Pistner, H. Diehl, P. Navé, and G. J. Rabadan, “A340 flight test results of a direct detection onboard UV LIDAR in forward-looking turbulence measurement configuration,” in Proceedings of the 15th Coherent Laser Radar Conference CLRC(Curran Associates Inc., 2009), pp. 173–176.

Seabridge, A.

I. Moir and A. Seabridge, Civil Avionics Systems (Professional Engineering Publishing, 2003).

Seckmeyer, G.

S. Wuttke and G. Seckmeyer, “Spectral radiance and sky luminance in Antarctica: a case study,” Theor. Appl. Climatol. 85, 131–148 (2006).
[CrossRef]

Serikov, I.

Taira, T.

T. Kitada, A. Hori, T. Taira, and T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, 1994), pp. 567–568.

Tchoryk, J. Peter

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

Tejeda, G.

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Molec. Spectrosc. 228, 38–65 (2004).
[CrossRef]

G. Avila, G. Tejeda, J. M. Fernandez, and S. Montero, “The rotational Raman spectra and cross sections of H2O, D2O, and HDO,” J. Molec. Spectrosc. 220, 259–275 (2003).
[CrossRef]

Thomas, L.

Tsuda, T.

Urzi, R.

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

Vaughan, G.

Wandinger, U.

Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer,” Appl. Opt. 44, 3593–3603 (2005).
[CrossRef]

U. Wandinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed., Springer Series in Optical Sciences (Springer, 2005), Vol. 102, pp. 241–271.

Wareing, D. P.

Watkins, C. B.

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

Weitkamp, C.

Whiteman, D. N.

P. Girolamo, R. Marchese, D. N. Whiteman, and B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).
[CrossRef]

Wiegner, M.

J. Gasteiger, S. Gross, V. Freudenthaler, and M. Wiegner, “Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements,” Atmos. Chem. Phys. 11, 2209–2223 (2011).
[CrossRef]

Wilson, J.

J. Wilson and J. F. B. Hawkes, Optoelectronics: An Introduction (Prentice-Hall International, 1983).

Wulfmeyer, V.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

Wuttke, S.

S. Wuttke and G. Seckmeyer, “Spectral radiance and sky luminance in Antarctica: a case study,” Theor. Appl. Climatol. 85, 131–148 (2006).
[CrossRef]

Young, A. T.

Zeyn, J.

Zuev, V. E.

Appl. Opt.

J. Gelbwachs and M. Birnbaum, “Fluorescence of atmospheric aerosols and lidar implications,” Appl. Opt. 12, 2442–2447 (1973).
[CrossRef]

A. T. Young, “Rayleigh scattering,” Appl. Opt. 20, 533–535 (1981).
[CrossRef]

Y. F. Arshinov, S. M. Bobrovnikov, V. E. Zuev, and V. M. Mitev, “Atmospheric temperature measurements using a pure rotational Raman lidar,” Appl. Opt. 22, 2984–2990 (1983).
[CrossRef]

A. T. Young and G. W. Kattawar, “Rayleigh-scattering line-profiles,” Appl. Opt. 22, 3668–3670 (1983).
[CrossRef]

G. Vaughan, D. P. Wareing, S. J. Pepler, L. Thomas, and V. Mitev, “Atmospheric temperature measurements made by rotational Raman scattering,” Appl. Opt. 32, 2758–2764 (1993).
[CrossRef]

A. Behrendt and J. Reichardt, “Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator,” Appl. Opt. 39, 1372–1378 (2000).
[CrossRef]

A. Bucholtz, “Rayleigh scattering calculations for the terrestial atmosphere,” Appl. Opt. 34, 2765–2773 (1995).
[CrossRef]

A. Behrendt, T. Nakamura, M. Onishi, R. Baumgart, and T. Tsuda, “Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient,” Appl. Opt. 41, 7657–7666 (2002).
[CrossRef]

A. Behrendt, T. Nakamura, and T. Tsuda, “Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere,” Appl. Opt. 43, 2930–2939 (2004).
[CrossRef]

Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, and D. Müller, “Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer,” Appl. Opt. 44, 3593–3603 (2005).
[CrossRef]

J. Cooney and M. Pina, “Laser radar measurements of atmospheric temperature profiles by use of Raman rotational backscatter,” Appl. Opt. 15, 602–603 (1976).
[CrossRef]

N. Cézard, A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, “Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh–Mie lidar,” Appl. Opt. 48, 2321–2332(2009).
[CrossRef]

Appl. Phys. B

E. V. Browell, S. Ismail, and W. B. Grant, “Differential absorption lidar (DIAL) measurements from air and space,” Appl. Phys. B 67, 399–410 (1998).
[CrossRef]

Atmos. Chem. Phys.

M. Radlach, A. Behrendt, and V. Wulfmeyer, “Scanning rotational Raman lidar at 355 nm for the measurement of tropospheric temperature fields,” Atmos. Chem. Phys. 8, 159–169 (2008).
[CrossRef]

J. Gasteiger, S. Gross, V. Freudenthaler, and M. Wiegner, “Volcanic ash from Iceland over Munich: mass concentration retrieved from ground-based remote sensing measurements,” Atmos. Chem. Phys. 11, 2209–2223 (2011).
[CrossRef]

Geophys. Res. Lett.

P. Girolamo, R. Marchese, D. N. Whiteman, and B. Demoz, “Rotational Raman lidar measurements of atmospheric temperature in the UV,” Geophys. Res. Lett. 31, L01106 (2004).
[CrossRef]

IEEE Trans. Geosci. Remote Sens.

D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, “Rotational Raman lidar to measure atmospheric temperature from the ground to 30 km,” IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993).
[CrossRef]

J. Aircr.

G. J. Rabadan, N. P. Schmitt, T. Pistner, and W. Rehm, “Airborne lidar for automatic feedforward control of turbulent in-flight phenomena,” J. Aircr. 47, 392–403 (2010).
[CrossRef]

J. Appl. Meteorol.

J. A. Cooney, “Measurement of atmospheric temperature profiles by Raman backscatter,” J. Appl. Meteorol. 11, 108–112 (1972).
[CrossRef]

A. Buck, “New equations for computing vapor pressure and enhancement factor,” J. Appl. Meteorol. 20, 1527–1532(1981).
[CrossRef]

J. Atmos. Chem.

J. Malicet, D. Daumont, J. Charbonnier, C. Parisse, A. Chakir, and J. Brion, “Ozone UV spectroscopy. II. absorption cross-sections and temperature dependence,” J. Atmos. Chem. 21, 263–273 (1995).
[CrossRef]

J. Geophys. Res.

J. P. F. Fortuin and H. Kelder, “An ozone climatology based on ozonesonde and satellite measurements,” J. Geophys. Res. 103, 31709–31734 (1998).
[CrossRef]

J. Molec. Spectrosc.

G. Avila, G. Tejeda, J. M. Fernandez, and S. Montero, “The rotational Raman spectra and cross sections of H2O, D2O, and HDO,” J. Molec. Spectrosc. 220, 259–275 (2003).
[CrossRef]

G. Avila, J. M. Fernandez, G. Tejeda, and S. Montero, “The Raman spectra and cross-sections of H2O, D2O, and HDO in the OH/OD stretching regions,” J. Molec. Spectrosc. 228, 38–65 (2004).
[CrossRef]

Opt. Lett.

Proc. SPIE

M. Fraczek, A. Behrendt, and N. Schmitt, “Optical air temperature and density measurement system for aircraft using elastic and Raman backscattering of laser light,” Proc. SPIE 7835, 78350D (2010).
[CrossRef]

C. B. Watkins, C. J. Richey, J. Peter Tchoryk, G. A. Ritter, M. T. Dehring, P. B. Hays, C. A. Nardell, and R. Urzi, “Molecular optical air data system (MOADS) prototype II,” Proc. SPIE 5412, 10–20 (2004).
[CrossRef]

Theor. Appl. Climatol.

S. Wuttke and G. Seckmeyer, “Spectral radiance and sky luminance in Antarctica: a case study,” Theor. Appl. Climatol. 85, 131–148 (2006).
[CrossRef]

Other

M. Radlach, “A scanning eye-safe rotational Raman lidar in the ultraviolet for measurements of tropospheric temperature fields,” Ph.D. dissertation (University of Hohenheim, 2008).

G. G. Gurzadyan, V. G. Dmitriev, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed., Springer Series in Optical Sciences (Springer-Verlag, 1999), Vol. 64.

V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (Wiley & Sons, 2004).

J. Wilson and J. F. B. Hawkes, Optoelectronics: An Introduction (Prentice-Hall International, 1983).

C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge Univ. Press, 1996).

J. Graeme, Photodiode Amplifiers: OP AMP Solutions (McGraw-Hill, 1995).

A. Behrendt, “Fernmessung atmosphärischer Temperaturprofile in Wolken mit Rotations-Raman-Lidar,” Ph.D. thesis (University of Hamburg, 2000).

R. M. Measures, Laser Remote Sensing (Wiley & Sons, 1984).

U. Wandinger, “Raman lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed., Springer Series in Optical Sciences (Springer, 2005), Vol. 102, pp. 241–271.

N. P. Schmitt, W. Rehm, T. Pistner, H. Diehl, P. Navé, and G. J. Rabadan, “A340 flight test results of a direct detection onboard UV LIDAR in forward-looking turbulence measurement configuration,” in Proceedings of the 15th Coherent Laser Radar Conference CLRC(Curran Associates Inc., 2009), pp. 173–176.

NESLIE project, retrieved March2011, http://www.neslie-fp6.org .

DANIELA project, retrieved March2011, http://www.danielaproject.eu .

H. W. Jentink and R. K. Bogue, “Optical air flow measurements for flight tests and flight testing optical flow meters,” NLR-TP-2005-256, Nationaal Lucht- en Ruimtevaartlaboratorium, 2005.

I. Moir and A. Seabridge, Civil Avionics Systems (Professional Engineering Publishing, 2003).

M. Fraczek, “Optical air data system for aircraft control based on analyzing Raman- and elastically backscattered laser light,” Ph.D. thesis (University of Hohenheim, in preparation).

libRadtran publication list, retrieved March2011, http://www.libradtran.org/doku.php?id=publications .

The Engineering Society for Advancing Mobility Land Sea Air and Space, Aerospace Standard AS8002: Air data computer—minimum performance standard, http://standards.sae.org/as8002a/.

BGV B2—Unfallverhütungsvorschrift Laserstrahlung (Berufsgenossenschaft Elektro Textil Feinmechanik, April1, 1988 as amended on January1, 1997 with implementation instructions from October1995 updated edition April2007).

H. M. Macleod, Thin-Film Optical Filters, 2nd ed. (Hilger, 1986).

International Civil Aviation Organization, International Standard Atmosphere (ISA), retrieved March2011, http://www.icao.int .

T. Kitada, A. Hori, T. Taira, and T. Kobayashi, “Strange behaviour of the measurement of atmospheric temperature profiles of the rotational Raman lidar,” in Proceedings of the 17th International Laser Radar Conference (National Institute for Environmental Studies, 1994), pp. 567–568.

A. Behrendt, “Temperature measurements with lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed., Springer Series in Optical Sciences (Springer, 2005), Vol. 102, pp. 273–305.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Backscatter coefficients for 532.07 nm laser light scattered from atmospheric air molecules at a temperature of 295 K and molecular number densities present at sea level. For the calculation of this spectrum, a water vapor volume concentration of 4% is assumed.

Fig. 2.
Fig. 2.

(a) Backscatter coefficients of the pure RR spectrum of air consisting of nitrogen and oxygen spectral lines plotted for an air temperature of 295 K and densities present at sea level and spectral transmission curves of the filters RR1, RR2, and CP. The filter CWLs are 531.2, 528.9, and 532.07 nm, respectively. (b) Envelopes of the RR spectrum at different temperatures.

Fig. 3.
Fig. 3.

Temperature dependence of the filtered RR signals. The filter CWLs are 531.2 nm for filter RR1 and 528.9 nm for filter RR2.

Fig. 4.
Fig. 4.

(a) The two defined parameters Q for temperature and S for density measurements. Q is density independent, and S is negligibly dependent on temperature. (b) The residual density error due to the temperature variation of S with and without the temperature correction factor [right factor of Eq. (3)].

Fig. 5.
Fig. 5.

Concept of the laboratory emitter and receiver system. A pulsed laser emits light into the atmosphere. Four channels detect and spectrally filter the light backscattered from the measurement volume at distances around 0.4 m < l scatt < 0.83 m (compare to Fig. 6).

Fig. 6.
Fig. 6.

Solid angle Ω scatt of that part of backscattered radiation, which is detected in each receiver channel, as a function of the scattering distance from the receiver l scatt . Ω scatt indicates the amount of light energy detected from different distances in front of the receiver and defines that the measurement volume is located at distances around 0.4 m < l scatt < 0.83 m .

Fig. 7.
Fig. 7.

Calculated statistical measurement uncertainties for (a), (b) nighttime temperature, (c), (d) density, and (e), (f) pressure measurements at flight altitudes of (a), (c), (e) 0 m and (b), (d), (f) 13,000 m when a single laser shot is used. Areas with minimum error correspond to the optimum spectral filter positions for the CWLs of RR1 and RR2. Dots mark the optimum values. Rectangles indicate the tuning ranges of the filters.

Fig. 8.
Fig. 8.

Statistical (a) temperature, (b) density, and (c) pressure measurement uncertainties Δ T , Δ N / N , and Δ p / p using the respective optimum CWLs of filters RR1 and RR2 for measurements at sea level (dashed lines) and altitudes of 13,000 m (solid lines) and for analyzing the backscatter signal of a single laser shot. The temperature plots have a kink at 11,000 m due to the characteristics of the ISA [38] used as input. For density measurements, the maximally adjustable CWL of filter RR2 ( = 529.3 nm ) is additionally plotted.

Fig. 9.
Fig. 9.

Systematic leakage error for (a) temperature and (b) density due to leakage of elastically backscattered radiation through the RR filters as a function of OD RR 1 = OD RR 2 = OD RR and additional statistical measurement uncertainty generated by the leakage correction for (c) temperature and (d) density. The calculations for (c) and (d) refer to a flight altitude of 13,000 m.

Fig. 10.
Fig. 10.

Laser pulse energies necessary for (a) temperature and (b) pressure measurements in daytime and in clear sky, in order to meet the measurement accuracies defined in [41]. Ten pulses are integrated for each measurement. Values for different laser wavelengths are shown.

Fig. 11.
Fig. 11.

Calculated SNRs for the three compared detector systems at their maximum gain for a detection bandwidth of 100 MHz. For the pulses detected in the RR channels, the APD system is best; for the pulses in channel CP, the PIN system is best.

Fig. 12.
Fig. 12.

Achievable SNRs with the APD system detecting optical RR pulses P rot , RR at ground ( 4 · 10 5 W ) as a function of the APD gain M APD . The optimum value is M APD = 6.5

Tables (2)

Tables Icon

Table 1. Optical Properties of the Interference Filtersa

Tables Icon

Table 2. Optimum CWLs for RR1 and RR2 and Achievable Statistical Measurement Uncertainties Δ T , Δ N / Δ N , and Δ p / Δ p for Air Temperature T , Density N , and Pressure p in Different Flight Situations ( OD RR 1 = OD RR 2 = OD RR )

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Q ( T ) = U RR 2 ( T , N ) U RR 1 ( T , N ) .
T calib = 2 c 1 c 2 + c 2 2 4 c 1 ( c 3 ln ( Q ) ) ,
S ( N ) = ( U RR 1 ( T , N ) + c 1 U RR 2 ( T , N ) ) · ( 1 + c 2 Q ( T ) + c 3 Q 2 ( T ) ) .
N calib = a · S .
R = β par + β Ray β Ray = U CP S S 0 U CP , 0 .
β par = ( R 1 ) · β Ray = ( R 1 ) · N calib · ( d σ d Ω ) Ray π .
p calib = N calib k B T calib ,
CWL RR ( φ RR ) = CWL RR , 0 1 ( sin ( φ RR ) / n RR ) 2 ,
P X = 0.94 · E L f w h m L · K · β X · Ω scatt ( l scatt ) · d l scatt .
β rot , RR = i , J N i F RR , i , J ( φ RR ) · ( d σ ( T ) d Ω ) rot , i , J π
P B , RR = Ψ · A det · ω rec · Δ λ RR ,
β leak , RR = ( β par + β Cab ) · 10 OD RR = R β Cab · 10 OD RR ,
Δ T leak ( R , OD RR 1 , OD RR 2 ) = T calib T leak , calib
Δ N leak ( R , OD RR 1 , OD RR 2 ) = N calib N leak , calib N calib .
U out , PD ( P opt ) = P opt M tot , PD ρ PD R F , PD ,
Δ U sens , PD ( P opt ) = R F , PD 2 · 2 e ( I DS , PD + M PD 2 F PD ( I DB , PD + ρ PD P opt ) ) · B ,
F APD = k eff · M APD ( 1 k eff ) ( 2 1 / M APD ) ,
F PMT = δ / ( δ 1 ) ,
Δ U amp , PD = ( e n , PD 2 + 4 k B T PD R F , PD + ( R F , PD i n , PD ) 2 + ( 2 π B C PD e n , PD R F , PD ) 2 3 ) · B .
Δ U out , PD ( P opt ) = ( Δ U sens , PD ( P opt ) ) 2 + ( Δ U amp , PD ) 2 .
U RR ( P rot , RR ) = U RR ( P rot , RR + P B , RR + P leak , RR ) U RR ( P B , RR ) κ RR U CP ( P CP ) .
Δ U tot , RR 2 ( P rot , RR ) = Δ U RR 2 ( P rot , RR + P B , RR + P leak , RR ) + Δ U RR 2 ( P B , RR ) + κ RR 2 Δ U CP 2 ( P CP ) .
Δ T = T Q Δ Q = T Q Q Δ U tot , RR 1 2 U RR 1 2 + Δ U tot , RR 2 2 U RR 2 2 ,
Δ N N = ( N calib U RR 1 Δ U tot , RR 1 ) 2 + ( N calib U RR 2 Δ U tot , RR 2 ) 2 / N calib Δ N N = a · [ ( ( 1 + c 2 U RR 2 U RR 1 + c 3 U RR 2 2 U RR 1 2 ) + ( U RR 1 + c 1 U RR 2 ) ( c 2 U RR 2 U RR 1 2 2 c 3 U RR 2 2 U RR 1 3 ) ) 2 Δ U tot , RR 1 2 + ( c 1 ( 1 + c 2 U RR 2 U RR 1 + c 3 U RR 2 2 U RR 1 2 ) + ( U RR 1 + c 1 U RR 2 ) ( c 2 1 U RR 1 + 2 c 3 U RR 2 U RR 1 2 ) ) 2 Δ U tot , RR 2 2 ] 1 2 / N calib .
Δ p p = ( Δ T T ) 2 + ( Δ N N ) 2 .

Metrics