Abstract

We describe and characterize a straightforward test setup for characterizing temporal and spectral dynamics of photochromic spectacle materials. Three measurement examples of contemporary silicate and organic photochromic spectacles are provided. The setup showed a good absolute accuracy of 5% of the luminous transmittance (τv) and repeatability of better than 3%. The samples showed different fading times. The sample with the highest dynamic range was the slowest and showed a noticeable change in the transmission spectra during deactivation. The silicate had the lowest dynamic range but also the most homogeneous transmission spectra throughout activation and deactivation. The proposed test device provided accurate results for spectral and temporal dynamics of photochromic materials under realistic conditions.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Smith, “Photochromic glasses: properties and applications,” J. Mater. Sci. 2, 139–152 (1967).
    [CrossRef]
  2. D. C. Look and W. L. Johnson, “Transmittance of photochromic glass at environmental extremes,” Appl. Opt. 18, 595–596 (1979).
    [CrossRef]
  3. R. J. Araujo, “Ophthalmic glass particularly photochromic glass,” J. Noncrystal. Sol. 47, 69–86 (1982).
  4. D. Ross, “Ophthalmic lenses: accurately characterizing transmittance of photochromic and other common lens materials,” Appl. Opt. 30, 3673–3677 (1991).
    [CrossRef]
  5. B. van Gemert, “The commercialization of plastic photochromic lenses: a tribute to John Crano,” Mol. Cryst. Liq. Cryst. 344, 57–62 (2000).
    [CrossRef]
  6. L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
    [CrossRef]
  7. W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154 (1964).
    [CrossRef]
  8. H. Goersch, Handbuch fuer Augenoptik (Carl Zeiss, 2000), pp. 144–145.
  9. M. Mennig, K. Fries, M. Lindenstruth, and H. Schmidt, “Development of fast switching photochromic coatings on transparent plastics and glass,” Thin Solid Films 351, 230–234 (1999).
    [CrossRef]
  10. J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. van Gemert, “Photochromic compounds: Chemistry and application in opthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
    [CrossRef]
  11. G. K. Megla, “Optical properties and applications of photochromic glass,” Appl. Opt. 5, 945–960 (1966).
    [CrossRef]
  12. G. K. Megla, “Exploitation of photochromic glass,” Opt. Laser Technol. 6, 61–68 (1974).
    [CrossRef]
  13. A. Tork, F. Boudreault, M. Roberge, A. M. Ritcey, R. A. Lessard, and T. V. Galstian, “Photochromic behavior of spiropyran in polymer matrices,” Appl. Opt. 40, 1180–1186 (2001).
    [CrossRef]
  14. K. Oba, I. Chapurin, S. Robu, and Y. Fainman, “Photochromic media with sensitivity in the visible spectra,” in Organic Thin Films for Photonic Applications, OSA Technical Digest(Optical Society of America, 1999), paper SuA2.
  15. D. J. Kerko, D. L. Morse, and D. W. Morgan, “Photochromic glass compositions for lightweight lenses,” U.S. patent 4,608,349 (19 May 1998).
  16. B. van Gemert and D. G. Kish, “Photochromic naphthopyran compositions of neutral color,” U.S. patent 5,753,146 (26 August 1986).
  17. C. Mann, M. Melzig, and U. Weigand, “Neutral-colored gray photochromic plastic object,” U.S. patent 6,373,615 (16 April 2002).
  18. J. A. Ferrari and C. D. Perciante, “Two-state model of light induced activation and thermal bleaching of photochromic glasses: theory and experiments,” Appl. Opt. 47, 3669–3673 (2008).
    [CrossRef]
  19. American National Standards Institute, “American national standard for occupational and educational personal eye and face protection devices,” Z87.1-2010.
  20. European Committer for Standardization, “Personal eye protection—Sunglare filters for industrial use,” EN 172.
  21. T. P. Seward, “Coloration and optical anisotropy in silver containing glasses,” J. Noncrystal. Solids 40, 499–500 (1980).

2008 (1)

2006 (1)

L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
[CrossRef]

2001 (1)

2000 (1)

B. van Gemert, “The commercialization of plastic photochromic lenses: a tribute to John Crano,” Mol. Cryst. Liq. Cryst. 344, 57–62 (2000).
[CrossRef]

1999 (1)

M. Mennig, K. Fries, M. Lindenstruth, and H. Schmidt, “Development of fast switching photochromic coatings on transparent plastics and glass,” Thin Solid Films 351, 230–234 (1999).
[CrossRef]

1996 (1)

J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. van Gemert, “Photochromic compounds: Chemistry and application in opthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

1991 (1)

1982 (1)

R. J. Araujo, “Ophthalmic glass particularly photochromic glass,” J. Noncrystal. Sol. 47, 69–86 (1982).

1980 (1)

T. P. Seward, “Coloration and optical anisotropy in silver containing glasses,” J. Noncrystal. Solids 40, 499–500 (1980).

1979 (1)

1974 (1)

G. K. Megla, “Exploitation of photochromic glass,” Opt. Laser Technol. 6, 61–68 (1974).
[CrossRef]

1967 (1)

G. P. Smith, “Photochromic glasses: properties and applications,” J. Mater. Sci. 2, 139–152 (1967).
[CrossRef]

1966 (1)

1964 (1)

W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154 (1964).
[CrossRef]

Araujo, R. J.

R. J. Araujo, “Ophthalmic glass particularly photochromic glass,” J. Noncrystal. Sol. 47, 69–86 (1982).

Armistead, W. H.

W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154 (1964).
[CrossRef]

Boudreault, F.

Chapurin, I.

K. Oba, I. Chapurin, S. Robu, and Y. Fainman, “Photochromic media with sensitivity in the visible spectra,” in Organic Thin Films for Photonic Applications, OSA Technical Digest(Optical Society of America, 1999), paper SuA2.

Crano, J. C.

J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. van Gemert, “Photochromic compounds: Chemistry and application in opthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Fainman, Y.

K. Oba, I. Chapurin, S. Robu, and Y. Fainman, “Photochromic media with sensitivity in the visible spectra,” in Organic Thin Films for Photonic Applications, OSA Technical Digest(Optical Society of America, 1999), paper SuA2.

Ferrari, J. A.

Flood, T.

J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. van Gemert, “Photochromic compounds: Chemistry and application in opthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Fries, K.

M. Mennig, K. Fries, M. Lindenstruth, and H. Schmidt, “Development of fast switching photochromic coatings on transparent plastics and glass,” Thin Solid Films 351, 230–234 (1999).
[CrossRef]

Galstian, T. V.

Goersch, H.

H. Goersch, Handbuch fuer Augenoptik (Carl Zeiss, 2000), pp. 144–145.

Haugen, B.

L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
[CrossRef]

Haymore, J.

L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
[CrossRef]

Hunter, B.

L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
[CrossRef]

Johnson, W. L.

Kerko, D. J.

D. J. Kerko, D. L. Morse, and D. W. Morgan, “Photochromic glass compositions for lightweight lenses,” U.S. patent 4,608,349 (19 May 1998).

Kish, D. G.

B. van Gemert and D. G. Kish, “Photochromic naphthopyran compositions of neutral color,” U.S. patent 5,753,146 (26 August 1986).

Knowles, D.

J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. van Gemert, “Photochromic compounds: Chemistry and application in opthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Kumar, A.

J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. van Gemert, “Photochromic compounds: Chemistry and application in opthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Lessard, R. A.

Lindenstruth, M.

M. Mennig, K. Fries, M. Lindenstruth, and H. Schmidt, “Development of fast switching photochromic coatings on transparent plastics and glass,” Thin Solid Films 351, 230–234 (1999).
[CrossRef]

Look, D. C.

Mamalis, N.

L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
[CrossRef]

Mann, C.

C. Mann, M. Melzig, and U. Weigand, “Neutral-colored gray photochromic plastic object,” U.S. patent 6,373,615 (16 April 2002).

Megla, G. K.

G. K. Megla, “Exploitation of photochromic glass,” Opt. Laser Technol. 6, 61–68 (1974).
[CrossRef]

G. K. Megla, “Optical properties and applications of photochromic glass,” Appl. Opt. 5, 945–960 (1966).
[CrossRef]

Melzig, M.

C. Mann, M. Melzig, and U. Weigand, “Neutral-colored gray photochromic plastic object,” U.S. patent 6,373,615 (16 April 2002).

Mennig, M.

M. Mennig, K. Fries, M. Lindenstruth, and H. Schmidt, “Development of fast switching photochromic coatings on transparent plastics and glass,” Thin Solid Films 351, 230–234 (1999).
[CrossRef]

Morgan, D. W.

D. J. Kerko, D. L. Morse, and D. W. Morgan, “Photochromic glass compositions for lightweight lenses,” U.S. patent 4,608,349 (19 May 1998).

Morse, D. L.

D. J. Kerko, D. L. Morse, and D. W. Morgan, “Photochromic glass compositions for lightweight lenses,” U.S. patent 4,608,349 (19 May 1998).

Oba, K.

K. Oba, I. Chapurin, S. Robu, and Y. Fainman, “Photochromic media with sensitivity in the visible spectra,” in Organic Thin Films for Photonic Applications, OSA Technical Digest(Optical Society of America, 1999), paper SuA2.

Perciante, C. D.

Ritcey, A. M.

Roberge, M.

Robu, S.

K. Oba, I. Chapurin, S. Robu, and Y. Fainman, “Photochromic media with sensitivity in the visible spectra,” in Organic Thin Films for Photonic Applications, OSA Technical Digest(Optical Society of America, 1999), paper SuA2.

Romaniv, N.

L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
[CrossRef]

Ross, D.

Schmidt, H.

M. Mennig, K. Fries, M. Lindenstruth, and H. Schmidt, “Development of fast switching photochromic coatings on transparent plastics and glass,” Thin Solid Films 351, 230–234 (1999).
[CrossRef]

Seward, T. P.

T. P. Seward, “Coloration and optical anisotropy in silver containing glasses,” J. Noncrystal. Solids 40, 499–500 (1980).

Smith, G. P.

G. P. Smith, “Photochromic glasses: properties and applications,” J. Mater. Sci. 2, 139–152 (1967).
[CrossRef]

Steven, S.

L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
[CrossRef]

Stookey, S. D.

W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154 (1964).
[CrossRef]

Tork, A.

van Gemert, B.

B. van Gemert, “The commercialization of plastic photochromic lenses: a tribute to John Crano,” Mol. Cryst. Liq. Cryst. 344, 57–62 (2000).
[CrossRef]

J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. van Gemert, “Photochromic compounds: Chemistry and application in opthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

B. van Gemert and D. G. Kish, “Photochromic naphthopyran compositions of neutral color,” U.S. patent 5,753,146 (26 August 1986).

Weigand, U.

C. Mann, M. Melzig, and U. Weigand, “Neutral-colored gray photochromic plastic object,” U.S. patent 6,373,615 (16 April 2002).

Werner, L.

L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
[CrossRef]

Appl. Opt. (5)

J. Cataract Refract. Surg. (1)

L. Werner, N. Mamalis, N. Romaniv, J. Haymore, B. Haugen, B. Hunter, and S. Steven, “New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility,” J. Cataract Refract. Surg. 32, 1214–1221 (2006).
[CrossRef]

J. Mater. Sci. (1)

G. P. Smith, “Photochromic glasses: properties and applications,” J. Mater. Sci. 2, 139–152 (1967).
[CrossRef]

J. Noncrystal. Sol. (1)

R. J. Araujo, “Ophthalmic glass particularly photochromic glass,” J. Noncrystal. Sol. 47, 69–86 (1982).

J. Noncrystal. Solids (1)

T. P. Seward, “Coloration and optical anisotropy in silver containing glasses,” J. Noncrystal. Solids 40, 499–500 (1980).

Mol. Cryst. Liq. Cryst. (1)

B. van Gemert, “The commercialization of plastic photochromic lenses: a tribute to John Crano,” Mol. Cryst. Liq. Cryst. 344, 57–62 (2000).
[CrossRef]

Opt. Laser Technol. (1)

G. K. Megla, “Exploitation of photochromic glass,” Opt. Laser Technol. 6, 61–68 (1974).
[CrossRef]

Pure Appl. Chem. (1)

J. C. Crano, T. Flood, D. Knowles, A. Kumar, and B. van Gemert, “Photochromic compounds: Chemistry and application in opthalmic lenses,” Pure Appl. Chem. 68, 1395–1398 (1996).
[CrossRef]

Science (1)

W. H. Armistead and S. D. Stookey, “Photochromic silicate glasses sensitized by silver halides,” Science 144, 150–154 (1964).
[CrossRef]

Thin Solid Films (1)

M. Mennig, K. Fries, M. Lindenstruth, and H. Schmidt, “Development of fast switching photochromic coatings on transparent plastics and glass,” Thin Solid Films 351, 230–234 (1999).
[CrossRef]

Other (7)

H. Goersch, Handbuch fuer Augenoptik (Carl Zeiss, 2000), pp. 144–145.

American National Standards Institute, “American national standard for occupational and educational personal eye and face protection devices,” Z87.1-2010.

European Committer for Standardization, “Personal eye protection—Sunglare filters for industrial use,” EN 172.

K. Oba, I. Chapurin, S. Robu, and Y. Fainman, “Photochromic media with sensitivity in the visible spectra,” in Organic Thin Films for Photonic Applications, OSA Technical Digest(Optical Society of America, 1999), paper SuA2.

D. J. Kerko, D. L. Morse, and D. W. Morgan, “Photochromic glass compositions for lightweight lenses,” U.S. patent 4,608,349 (19 May 1998).

B. van Gemert and D. G. Kish, “Photochromic naphthopyran compositions of neutral color,” U.S. patent 5,753,146 (26 August 1986).

C. Mann, M. Melzig, and U. Weigand, “Neutral-colored gray photochromic plastic object,” U.S. patent 6,373,615 (16 April 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic layout of the measurement system showing the Xe light source (LS) with optical fiber (F) and the collimator with filter wheel (L1, KG2 & FW). Lens L2 recollimates the beam to the sample within the measurement chamber (C) equipped with a thermoelectric cooler (T) and to the signal fiber of the spectrometer (SM).

Fig. 2.
Fig. 2.

The five samples used in this study in the non-activated state under indoor lighting conditions. Samples 1 and 2 (top) and samples 3.1 through 3.3 (bottom).

Fig. 3.
Fig. 3.

(a) Time resolved luminous transmittance of the three different materials (1 through 3.1). (b) Time resolved luminous transmittance of the three identical materials (3.1 through 3.3). Exposure starts at t=0min and stops at t=15min.

Fig. 4.
Fig. 4.

Spectral transmittance of three samples for specific time points. The solid gray and solid black lines represent the bright and dark state (t=0min and t=15min). Transmittance at tϵ is plotted as dashed line as well as at the time for 50% of activation (t50a, △) and deactivation (t50d, ○). The respective time values are provided in Table 2.

Tables (2)

Tables Icon

Table 1. Specifications of the Photochromic Samples (1–3.3) and the Gray Filter Shield Used for Characterization (0)

Tables Icon

Table 2. Parameters Extracted from the Spectral Transmittance Dataa

Metrics