Abstract

We demonstrate efficient spectral compression of picosecond pulses in an all-fiber configuration at telecommunication wavelengths. A spectral compression by a factor of 12 is achieved. Performing temporal shaping with a parabolic pulse significantly improves the spectral compression with much lower substructures and an enhanced Strehl ratio.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [CrossRef]
  2. Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
    [CrossRef]
  3. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J Opt. Soc. Am. B 1, 139–149 (1984).
    [CrossRef]
  4. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617–7622 (2006).
    [CrossRef]
  5. A. M. Clarke, D. G. Williams, M. A. F. Roelens, and B. J. Eggleton, “Reconfigurable optical pulse generator employing a Fourier-Domain programmable optical processor,” J. Lightwave Technol. 28, 97–103 (2010).
    [CrossRef]
  6. D. N. Schimpf, J. Limpert, and A. Tünnermann, “Controllong the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum,” Opt. Express 15, 16945–16953 (2007).
    [CrossRef]
  7. C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
    [CrossRef]
  8. N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Kvantovaya Elektron. 18, 865–867 (1991).
  9. S. A. Planas, N. L. Pires Mansur, C. H. Brito Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18, 699–701 (1993).
    [CrossRef]
  10. M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
    [CrossRef]
  11. E. R. Andresen, J. Thogersen, and S. R. Keiding, “Spectral compression of femtosecond pulses in photonic crystal fibers,” Opt. Lett. 30, 2025–2027 (2005).
    [CrossRef]
  12. J. P. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191–195 (2002).
    [CrossRef]
  13. E. R. Andresen, V. Birkedal, J. Thogersen, and S. R. Keiding, “Tunable light source for coherent anti-Stockes Raman scattering microspectroscopy based on the soliton self-frequency shift,” Opt. Lett. 31, 1328–1330 (2006).
    [CrossRef]
  14. C. Finot, A. Guenot, and P. Dupriez, “Spectral compression of optical parabolic similaritons,” Ann. Phys. France 32, 71–74 (2007).
    [CrossRef]
  15. C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14, 3161–3170 (2006).
    [CrossRef]
  16. E. R. Andresen, J. M. Dudley, C. Finot, D. Oron, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude shaped pulses with negative chirp,” Opt. Lett. 36, 707–709 (2011).
    [CrossRef]
  17. M. Rusu and O. G. Okhotnikov, “All-fiber picosecond laser source based on nonlinear spectral compression,” Appl. Phys. Lett. 89, 091118 (2006).
    [CrossRef]
  18. T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating,” Opt. Lett. 33, 1102–1104 (2008).
    [CrossRef]
  19. Y. Zaouter, D. N. Papadopoulos, M. Hanna, F. Druon, E. Cormier, and P. Georges, “Third-order spectral phase compensation in parabolic pulse compression,” Opt. Express 15, 9372–9377 (2007).
    [CrossRef]
  20. D. Anderson and M. Lisak, “Analytic study of pulse broadening in dispersive optical fibers,” Phys. Rev. A 35, 184–187 (1987).
    [CrossRef]
  21. A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akopyan, and A. Muradyan, “Dispersive regime of spectral compression,” Quantum Electron. 38, 383 (2008).
    [CrossRef]
  22. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11, 2489–2494 (1972).
    [CrossRef]

2011

2010

2009

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[CrossRef]

2008

A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akopyan, and A. Muradyan, “Dispersive regime of spectral compression,” Quantum Electron. 38, 383 (2008).
[CrossRef]

T. Hirooka, M. Nakazawa, and K. Okamoto, “Bright and dark 40 GHz parabolic pulse generation using a picosecond optical pulse train and an arrayed waveguide grating,” Opt. Lett. 33, 1102–1104 (2008).
[CrossRef]

2007

2006

2005

2003

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

2002

J. P. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191–195 (2002).
[CrossRef]

1993

S. A. Planas, N. L. Pires Mansur, C. H. Brito Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18, 699–701 (1993).
[CrossRef]

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

1991

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Kvantovaya Elektron. 18, 865–867 (1991).

1987

D. Anderson and M. Lisak, “Analytic study of pulse broadening in dispersive optical fibers,” Phys. Rev. A 35, 184–187 (1987).
[CrossRef]

1984

W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

1978

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

1972

Akopyan, R. S.

A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akopyan, and A. Muradyan, “Dispersive regime of spectral compression,” Quantum Electron. 38, 383 (2008).
[CrossRef]

Anderson, D.

D. Anderson and M. Lisak, “Analytic study of pulse broadening in dispersive optical fibers,” Phys. Rev. A 35, 184–187 (1987).
[CrossRef]

Andresen, E. R.

Birkedal, V.

Clarke, A. M.

Cormier, E.

Cruz, C. H. Brito

Druon, F.

Dudley, J. M.

E. R. Andresen, J. M. Dudley, C. Finot, D. Oron, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude shaped pulses with negative chirp,” Opt. Lett. 36, 707–709 (2011).
[CrossRef]

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[CrossRef]

Dupriez, P.

C. Finot, A. Guenot, and P. Dupriez, “Spectral compression of optical parabolic similaritons,” Ann. Phys. France 32, 71–74 (2007).
[CrossRef]

Eggleton, B. J.

Esayan, G. L.

A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akopyan, and A. Muradyan, “Dispersive regime of spectral compression,” Quantum Electron. 38, 383 (2008).
[CrossRef]

Finot, C.

Fragnito, H. L.

Furusawa, F.

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Gabler, T.

J. P. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191–195 (2002).
[CrossRef]

Georges, P.

Guenot, A.

C. Finot, A. Guenot, and P. Dupriez, “Spectral compression of optical parabolic similaritons,” Ann. Phys. France 32, 71–74 (2007).
[CrossRef]

Hanna, M.

Hirooka, T.

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

Ibsen, M.

Keiding, S. R.

Kibler, B.

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[CrossRef]

Kutuzyan, A. A.

A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akopyan, and A. Muradyan, “Dispersive regime of spectral compression,” Quantum Electron. 38, 383 (2008).
[CrossRef]

Liem, A.

J. P. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191–195 (2002).
[CrossRef]

Limpert, J.

Limpert, J. P.

J. P. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191–195 (2002).
[CrossRef]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Lisak, M.

D. Anderson and M. Lisak, “Analytic study of pulse broadening in dispersive optical fibers,” Phys. Rev. A 35, 184–187 (1987).
[CrossRef]

Mansur, N. L. Pires

Mansuryan, T. G.

A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akopyan, and A. Muradyan, “Dispersive regime of spectral compression,” Quantum Electron. 38, 383 (2008).
[CrossRef]

Markaryan, N. L.

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Kvantovaya Elektron. 18, 865–867 (1991).

Millot, G.

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[CrossRef]

Monro, T. M.

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Mukasa, K.

Muradyan, A.

A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akopyan, and A. Muradyan, “Dispersive regime of spectral compression,” Quantum Electron. 38, 383 (2008).
[CrossRef]

Muradyan, L. K.

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Kvantovaya Elektron. 18, 865–867 (1991).

Nakazawa, M.

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

Okamoto, K.

Okhotnikov, O. G.

M. Rusu and O. G. Okhotnikov, “All-fiber picosecond laser source based on nonlinear spectral compression,” Appl. Phys. Lett. 89, 091118 (2006).
[CrossRef]

Oron, D.

Papadopoulos, D. N.

Papazyan, T. A.

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Kvantovaya Elektron. 18, 865–867 (1991).

Parmigiani, F.

Petropoulos, P.

Planas, S. A.

Richardson, D. J.

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[CrossRef]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14, 7617–7622 (2006).
[CrossRef]

C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, “Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,” Opt. Express 14, 3161–3170 (2006).
[CrossRef]

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Rigneault, H.

Roelens, M. A. F.

Rusu, M.

M. Rusu and O. G. Okhotnikov, “All-fiber picosecond laser source based on nonlinear spectral compression,” Appl. Phys. Lett. 89, 091118 (2006).
[CrossRef]

Schimpf, D. N.

Shank, C. V.

W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

Smith, R. G.

Stolen, R. H.

W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Thogersen, J.

Tomlinson, W. J.

W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

Tünnermann, A.

D. N. Schimpf, J. Limpert, and A. Tünnermann, “Controllong the influence of SPM in fiber-based chirped-pulse amplification systems by using an actively shaped parabolic spectrum,” Opt. Express 15, 16945–16953 (2007).
[CrossRef]

J. P. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191–195 (2002).
[CrossRef]

Williams, D. G.

Yousoff, Z.

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

Zaouter, Y.

Zellmer, H.

J. P. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191–195 (2002).
[CrossRef]

Ann. Phys. France

C. Finot, A. Guenot, and P. Dupriez, “Spectral compression of optical parabolic similaritons,” Ann. Phys. France 32, 71–74 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. B

J. P. Limpert, T. Gabler, A. Liem, H. Zellmer, and A. Tünnermann, “SPM-induced spectral compression of picosecond pulses in a single-mode Yb-doped fiber amplifier,” Appl. Phys. B 74, 191–195 (2002).
[CrossRef]

Appl. Phys. Lett.

M. Oberthaler and R. A. Höpfel, “Spectral narrowing of ultrashort laser pulses by self-phase modulation in optical fibers,” Appl. Phys. Lett. 63, 1017–1019 (1993).
[CrossRef]

M. Rusu and O. G. Okhotnikov, “All-fiber picosecond laser source based on nonlinear spectral compression,” Appl. Phys. Lett. 89, 091118 (2006).
[CrossRef]

IEEE J. Quantum Electron.

C. Finot, J. M. Dudley, B. Kibler, D. J. Richardson, and G. Millot, “Optical parabolic pulse generation and applications,” IEEE J. Quantum Electron. 45, 1482–1489 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Yousoff, P. Petropoulos, F. Furusawa, T. M. Monro, and D. J. Richardson, “A 36-channel×10  GHz spectrally sliced pulse source based on supercontinuum generation in normally dispersive highly nonlinear holey fiber,” IEEE Photon. Technol. Lett. 15, 1689–1691 (2003).
[CrossRef]

J Opt. Soc. Am. B

W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J Opt. Soc. Am. B 1, 139–149 (1984).
[CrossRef]

J. Lightwave Technol.

Kvantovaya Elektron.

N. L. Markaryan, L. K. Muradyan, and T. A. Papazyan, “Spectral compression of ultrashort laser pulses,” Kvantovaya Elektron. 18, 865–867 (1991).

Opt. Express

Opt. Lett.

Phys. Rev. A

R. H. Stolen and C. Lin, “Self-phase modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

D. Anderson and M. Lisak, “Analytic study of pulse broadening in dispersive optical fibers,” Phys. Rev. A 35, 184–187 (1987).
[CrossRef]

Quantum Electron.

A. A. Kutuzyan, T. G. Mansuryan, G. L. Esayan, R. S. Akopyan, and A. Muradyan, “Dispersive regime of spectral compression,” Quantum Electron. 38, 383 (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Simulation: Evolution of the output spectral profile according to the input peak power for an initial sech2 intensity profile (a) and for a parabolic intensity profile (b). Spectra are normalized so that the energy of the spectra equals 1.

Fig. 2.
Fig. 2.

Simulation: Evolution of the output spectral parameters according to the initial peak-power for the parabolic pulse shape (solid black line) and sech pulse (gray line). (a) FWHM spectral width, (b) Strehl ratio, (c) evolution of the rms spectral width as a function of input peak power for a parabolic pulse: numerical results (solid black line) are compared to a parabolic fit (dots).

Fig. 3.
Fig. 3.

Simulation: (a) Temporal intensity and chirp profiles obtained for the optimum point of compression for hyperbolic secant and parabolic profiles (gray and black line, respectively). The input temporal intensity profiles are plotted with full circles. (b) Spectral intensity profiles at the point of optimum compression for hyperbolic secant and parabolic profiles (gray and black solid lines, respectively). The results are compared to the initial spectral plotted in dashed lines.

Fig. 4.
Fig. 4.

Experimental setup. MLL, modelocked laser; IM, intensity modulator; PM, phase modulator; SMF, single mode fiber; EDFA, erbium-doped fiber amplifier; OVA, optical variable attenuator; HNLF, highly nonlinear fiber; OSA, optical spectrum analyzer.

Fig. 5.
Fig. 5.

Initial pulse profiles after stretching in the 3.9 km long SMF segment. In absence of amplitude spectral shaping, the recorded intensity profile (gray line) is compared to a sech2 intensity fit (gray circles). Using an initial spectral shaping, the experimental results (black line) are compared to a parabolic intensity profile (black circles).

Fig. 6.
Fig. 6.

Experimental results: Evolution of the spectral profile as a function of the input peak power for an initial sech2 intensity profile (a) and for a parabolic intensity profile (b). Spectra are normalized so that the energy of the spectra equals 1.

Fig. 7.
Fig. 7.

(a) Optical spectra obtained at the optimum compression point (solid line) for a sech pulse (gray line) and parabolic shaped pulse (black line) and compared to the input spectra (dashed line), (b) evolution of the Strehl ratio according to the initial peak-power for the parabolic pulse (solid black line) and sech pulse (solid gray line), (c) evolution of the rms spectral width according to the input peak power for a parabolic pulse: experimental results (solid black line) are compared to a parabolic law.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ψ(T,0)=P(T,0)exp(iCT2T2),
φNL(T,L)=γP(T,0)L.
ψ(T,L)=P(T,0)exp(i(CT2T2γP(T,0)L)).
CT2T2γP(T,0)L=K,
P(T,0)=CT2γLT2KγL,
P(T,0)=PP(1T2TP2),
TP2=2γLPPCT.
iψz=β222ψT2γ|ψ|2ψ.

Metrics