Abstract

This study compares the aerosol backscatter and extinction coefficients retrieved from vertical elastic and Raman channels with those derived from measurements with multiangle elastic channels. Retrievals from simulated vertical signals at 355 nm, 387 nm, 532 nm, and 607 nm are compared with those from multiangle measurements (at 15 elevation angles) at 355 nm and 532 nm. The atmosphere is considered horizontally homogeneously stratified. For the backscatter coefficient, the Raman backscatter solution and the multiangle solution are considered. For the extinction coefficient, retrievals from the Raman channel and multiangle measurements are compared. The comparison shows that in the presence of horizontal homogeneity, multiangle measurements provide more reliable results, especially for the aerosol extinction coefficient. The uncertainty in the measured signals is considered in an alternative approach to quantify the relative error of the retrieved profiles with respect to the models (linear regression between retrieval and model).

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef]
  2. U. Wandinger, “Raman Lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005).
  3. V. A. Kovalev and W. E. Eichinger, Elastic Lidar. Theory, Practice, and Analysis Methods (Wiley, 2004).
  4. M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
    [CrossRef]
  5. C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadembosch, J. A. Rodriguez, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004).
    [CrossRef]
  6. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparison in the framework of EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43, 5370–5385 (2004).
    [CrossRef]
  7. K. V. Chance and R. J. D. Spurr, “Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum,” Appl. Opt. 36, 5224–5230 (1997).
    [CrossRef]
  8. B. Edlén, “The refractive index of air,” Metrologia 2, 71–80 (1966).
    [CrossRef]
  9. D. N. Whiteman, S. H. Melfi, and R. A. Ferare, “Raman lidar system for the measurement of water vapour and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef]
  10. D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
    [CrossRef]
  11. M. Kano, “On the determination of backscattered and extinction coefficient of the atmosphere by using laser radar,” Papers Meteor. Geophys. 19, 121–129 (1968).
  12. P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969).
    [CrossRef]
  13. J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science, 1997), pp. 327.
  14. V. A. Kovalev, C. Wold, A. Petkov, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011).
    [CrossRef]
  15. M. Adam, “Development of lidar techniques to estimate atmospheric optical properties,” Ph.D. dissertation (Johns Hopkins University, 2005).
  16. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [CrossRef]
  17. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [CrossRef]

2011 (1)

2007 (1)

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
[CrossRef]

2004 (2)

1999 (1)

1997 (1)

1992 (2)

1985 (1)

1984 (1)

1969 (1)

P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969).
[CrossRef]

1968 (1)

M. Kano, “On the determination of backscattered and extinction coefficient of the atmosphere by using laser radar,” Papers Meteor. Geophys. 19, 121–129 (1968).

1966 (1)

B. Edlén, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Adam, M.

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
[CrossRef]

M. Adam, “Development of lidar techniques to estimate atmospheric optical properties,” Ph.D. dissertation (Johns Hopkins University, 2005).

Amiridis, V.

Amodeo, A.

Ansmann, A.

Böckmann, C.

Boselli, A.

Bösenberg, J.

Chance, K. V.

De Tomasi, F.

Delaval, A.

Edlén, B.

B. Edlén, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Eichinger, W. E.

V. A. Kovalev and W. E. Eichinger, Elastic Lidar. Theory, Practice, and Analysis Methods (Wiley, 2004).

Ferare, R. A.

Fernald, F. G.

Frioud, M.

Hågård, A.

Hamilton, P. M.

P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969).
[CrossRef]

Hao, W. M.

V. A. Kovalev, C. Wold, A. Petkov, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011).
[CrossRef]

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
[CrossRef]

Horvat, M.

Iarlori, M.

Kano, M.

M. Kano, “On the determination of backscattered and extinction coefficient of the atmosphere by using laser radar,” Papers Meteor. Geophys. 19, 121–129 (1968).

Klett, J. D.

Komguem, L.

Kovalev, V.

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
[CrossRef]

Kovalev, V. A.

Kreipl, S.

Larchevêque, G.

Matthias, V.

Melfi, S. H.

Michaelis, W.

Newton, J.

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
[CrossRef]

Pahlow, M.

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
[CrossRef]

Pandolfi, M.

Papayannis, A.

Pappalardo, G.

Parlange, M. B.

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
[CrossRef]

Petkov, A.

Riebesell, M.

Rocadembosch, F.

Rocadenbosch, F.

Rodriguez, J. A.

Schneider, J.

Shcherbakov, V.

Spurr, R. J. D.

Taylor, J. R.

J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science, 1997), pp. 327.

Wandinger, U.

Wang, X.

Weitkamp, C.

Whiteman, D. N.

Wiegner, M.

Wold, C.

V. A. Kovalev, C. Wold, A. Petkov, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011).
[CrossRef]

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
[CrossRef]

Appl. Opt. (9)

F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[CrossRef]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
[CrossRef]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef]

D. N. Whiteman, S. H. Melfi, and R. A. Ferare, “Raman lidar system for the measurement of water vapour and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
[CrossRef]

D. N. Whiteman, “Application of statistical methods to the determination of slope in lidar data,” Appl. Opt. 38, 3360–3369 (1999).
[CrossRef]

K. V. Chance and R. J. D. Spurr, “Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum,” Appl. Opt. 36, 5224–5230 (1997).
[CrossRef]

C. Böckmann, U. Wandinger, A. Ansmann, J. Bösenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hågård, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larchevêque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadembosch, J. A. Rodriguez, J. Schneider, V. Shcherbakov, and M. Wiegner, “Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms,” Appl. Opt. 43, 977–989 (2004).
[CrossRef]

G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, “Aerosol lidar intercomparison in the framework of EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio,” Appl. Opt. 43, 5370–5385 (2004).
[CrossRef]

V. A. Kovalev, C. Wold, A. Petkov, and W. M. Hao, “Modified technique for processing multiangle lidar data measured in clear and moderately polluted atmospheres,” Appl. Opt. 50, 4957–4966 (2011).
[CrossRef]

Atmos. Environ. (1)

P. M. Hamilton, “Lidar measurement of backscatter and attenuation of atmospheric aerosol,” Atmos. Environ. 3, 221–223 (1969).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

M. Adam, V. Kovalev, C. Wold, J. Newton, M. Pahlow, W. M. Hao, and M. B. Parlange, “Application of the Kano-Hamilton multiangle inversion method in clear atmospheres,” J. Atmos. Ocean. Technol. 24, 2114–2128 (2007).
[CrossRef]

Metrologia (1)

B. Edlén, “The refractive index of air,” Metrologia 2, 71–80 (1966).
[CrossRef]

Papers Meteor. Geophys. (1)

M. Kano, “On the determination of backscattered and extinction coefficient of the atmosphere by using laser radar,” Papers Meteor. Geophys. 19, 121–129 (1968).

Other (4)

U. Wandinger, “Raman Lidar,” in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005).

V. A. Kovalev and W. E. Eichinger, Elastic Lidar. Theory, Practice, and Analysis Methods (Wiley, 2004).

J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science, 1997), pp. 327.

M. Adam, “Development of lidar techniques to estimate atmospheric optical properties,” Ph.D. dissertation (Johns Hopkins University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Mean RCS for 355 nm and 387 nm at a 90° elevation angle; (b) mean RCS for 532 nm and 607 nm at an 90° elevation angle; (c) mean RCS for multiangle measurements at 355 nm; and (d) mean RCS for multiangle measurements at 532 nm.

Fig. 2.
Fig. 2.

Particulate optical depth τp [(a) and (b)] and intercept A [(c) and (d)] for 355 nm and 532 nm as retrieved from multiangle measurements.

Fig. 3.
Fig. 3.

Aerosol backscatter coefficient [1/m/sr] at 355 nm (a) and 532 nm (b) as retrieved from elastic and Raman vertical measurements (RB) and multiangle measurements (MB). The model is shown by the black curve.

Fig. 4.
Fig. 4.

Mean relative error (MRE) and its STD [Eqs. (8) and (9)] for aerosol backscatter coefficient over PBL and SDL, for 355 nm and 532 nm (a), MREw and RMSREw [Eqs. (10) and (11)] for aerosol backscatter coefficient at 355 nm; (b) and 532 nm; (c). Note that PBL represents the 0.32 km–2 km region while SDL represents the 3 km–4.4 km region. RB stands for aerosol Raman backscatter coefficient, while MB stands for the aerosol multi-angle backscatter coefficient.

Fig. 5.
Fig. 5.

Aerosol extinction coefficient [1/m] as retrieved from the multiangle method (ME) and the Raman method (RE), for 355 nm (a) and 532 nm (b). The model is shown by the black curve.

Fig. 6.
Fig. 6.

Mean relative error (MRE) and its STD [Eqs. (8) and (9)] for aerosol extinction coefficient over PBL and SDL, for (a) 355 nm and 532 nm; (b) MREw and RMSREw [Eqs. (10) and (11)] for aerosol extinction coefficient at 355 nm; and (c) 532 nm. Note that PBL represents the 0.35 km–2 km region while SDL represents the 3 km–4.4 km region. ME stands for multiangle extinction coefficient while RE stands for Raman extinction coefficient.

Fig. 7.
Fig. 7.

The weighted mean relative error (MREw) and RMSREw [Eqs. (10) and (11)] for the retrieved profiles of the aerosol extinction coefficient through the Raman and MA obtained as a function of the error (ε, ε1/2, ε2). Black symbols correspond to 355 nm, PBL (0.35 km–2 km), red symbols correspond to 355 nm, SDL (3 km–4.4 km), blue symbols correspond to 532 nm, PBL and green symbols correspond to 532 nm, SDL.

Fig. 8.
Fig. 8.

Regression mean relative error (MREr) and its uncertainty limit εMREr [Eqs. (12) and (13)] for the (a) aerosol backscatter coefficient and (b) aerosol extinction coefficient. The planetary boundary layer (PBL) represents (a) the 0.32 km–2 km region and (b) 0.35–2 km region, while SDL represents the 3 km–4.4 km region. Multiangle backscatter (MB) and RB stand for the multiangle and Raman backscatter coefficients, while ME and RE stand for the multiangle and Raman extinction coefficients.

Tables (6)

Tables Icon

Table 1. Errors Estimates for Aerosol Backscatter Coefficient [%]a

Tables Icon

Table 2. Errors Estimates for Aerosol Extinction Coefficient [%]a

Tables Icon

Table 3. Mean Relative Error and its Uncertainty (MREr±εMREr) as Determined Through the Linear Regression [Eqs. (12) and (13)] for Backscatter Coefficient [%]

Tables Icon

Table 4. Mean Relative Error and its Uncertainty (MREr±εMREr) as Determined Through the Linear Regression [Eqs. (12) and (13)] for Extinction Coefficient [%]

Tables Icon

Table 5. Maximum Absolute Values for |MREr±εMREr| as Determined Through the Linear Regression [Eqs. (12) and (13)] for Backscatter Coefficient [%]

Tables Icon

Table 6. Maximum Absolute Values for |MREr±εMREr| as Determined Through the Linear Regression [Eqs. (12) and (13)] for Extinction Coefficient [%]

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

σm(λ,r)=32π3(n1)23λ4KbT02P02P(r)T(r)6+3δ67δ,
βp(λL,r)=βm(λL,r)P(λL,r)P(λN,r)P(λN,rmax)P(λL,rmax)Δτ(λN,λL,r,rmax)βm(λL,r),
Δτ(λN,λL,r,rmax)=exp{rrmax[α(λN,r)α(λL,r)]dr},
αp(λL,r)=ddr{ln[NN(r)P(λN,r)r2]}αm(λL,r)αm(λN,r)1+(λLλN)k.
yi(h)=ln[Pi(h)(h/sinϕi)2]=ln[Cβt,i(h)]2τt,i(0,h)xi.
C=1ni=1nCβt,iβm,i,
βp(r)=exp[A(r)]Cβm(r).
Δgrel¯=1ni=1n|grgm|gm100[%],
δgrel=[1ni=1n(ΔgrelΔgrel¯)2]1/2,
MREw=100i=1nwigr,igm,igm,ii=1nwi[%],wi=(1σgr,igm,i)2=(gm,iσgr,i)2,
RMSREw=100(i=1nwi(gr,igm,igm,i)2i=1nwi)1/2[%],wi=1[2(gr,igm,i)σgr,igm,i2]2=gm,i4[2(gr,igm,i)σgr,i]2,
MREr=100(slope1)[%],
εMREr=100εslope[%],
RCS(h,ϕ)=RCS(h)exp[2τt(h)(11/sinϕ)],

Metrics