Abstract

It has been important to optimize the transmitter power in wireless optical communication systems. The conventional approach was based on the reciprocal Pareto model. In this paper, the investigation is extended to a more general scenario where the instantaneous signal-to-noise ratio follows the log-square-Ricean distribution. Accordingly, the optimization model is established. The conventional model thus becomes a special case of the new model. It is shown that the new model can be analytically solved. The sample solutions clearly show how the optima of transmitter power change when the log-square-Ricean profile changes. These results would provide useful guidelines to system design.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
    [CrossRef]
  2. R. Otte, L. P. de Jong, and A. H. M. Van Roermund, Low-Power Wireless Infrared Communications (Kluwer, 1999).
  3. X. Liu, “Optimal transmitter power of an intersatellite optical communication system with reciprocal Pareto fading,” Appl. Opt. 49, 915–919 (2010).
    [CrossRef]
  4. C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
    [CrossRef]
  5. J. J. Degnan and B. J. Klein, “Optical antenna gain. 2: receiving antennas,” Appl. Opt. 13, 2397–2401 (1974).
    [CrossRef]
  6. S. G. Lambert and W. L. Casey, Laser Communications in Space (Artech House, 1995).
  7. J. C. Palais, Fiber Optic Communications (Prentice-Hall, 2005).
  8. J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).

2010 (1)

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

1989 (1)

C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

1974 (1)

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Casey, W. L.

S. G. Lambert and W. L. Casey, Laser Communications in Space (Artech House, 1995).

Chen, C. C.

C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

de Jong, L. P.

R. Otte, L. P. de Jong, and A. H. M. Van Roermund, Low-Power Wireless Infrared Communications (Kluwer, 1999).

Degnan, J. J.

Gardner, C. S.

C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Klein, B. J.

Lambert, S. G.

S. G. Lambert and W. L. Casey, Laser Communications in Space (Artech House, 1995).

Liu, X.

Otte, R.

R. Otte, L. P. de Jong, and A. H. M. Van Roermund, Low-Power Wireless Infrared Communications (Kluwer, 1999).

Palais, J. C.

J. C. Palais, Fiber Optic Communications (Prentice-Hall, 2005).

Proakis, J. G.

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).

Salehi, M.

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).

Van Roermund, A. H. M.

R. Otte, L. P. de Jong, and A. H. M. Van Roermund, Low-Power Wireless Infrared Communications (Kluwer, 1999).

Appl. Opt. (2)

IEEE Trans. Commun. (1)

C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37, 252–260 (1989).
[CrossRef]

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Other (4)

R. Otte, L. P. de Jong, and A. H. M. Van Roermund, Low-Power Wireless Infrared Communications (Kluwer, 1999).

S. G. Lambert and W. L. Casey, Laser Communications in Space (Artech House, 1995).

J. C. Palais, Fiber Optic Communications (Prentice-Hall, 2005).

J. G. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Profile of the Marcum Q-function.

Fig. 2.
Fig. 2.

Profile of the ratio of optimal transmitter gains.

Fig. 3.
Fig. 3.

Profile of the normalized minimum transmitter power.

Tables (3)

Tables Icon

Table 1. Optimal Normalized Transmitter Gain

Tables Icon

Table 2. Ratio of Optimal Transmitter Gains

Tables Icon

Table 3. Optimal Normalized Transmitter Power

Equations (35)

Equations on this page are rendered with MathJax. Learn more.

{(4PT,0,0,0),(0,4PT,0,0),(0,0,4PT,0),(0,0,0,4PT)}.
PR=MPTGTGR(λ4πd)2ηTηRLT(GT,Θ)LR(GR,Γ).
R=ηqλ/(h0c),
μ=RPR.
fΘ(θ)=(θσ2)exp(θ22σ2),(θ0),
fΘ(θ)=(θσ2)exp(θ2+s22σ2)I0(sθσ2),(θ>0),
K=s22σ2.
FΘ(θ)=1Q(sσ,θσ),
Q(a,b)=btexp(t2+a22)I0(at)dt.
Q(0,b)=exp(b22),Q(a,0)=1.
U=Ps2σN2=Aexp(2GTΘ2),(0<UA),
A=12σN2(λ4πd)4(RMPTGTGRηTηR)2.
As=132(πWTDRd)4(MPTηTηRηqσNh0c)2.
Pa=Pr(Ua),
FU(u)=Pr(Uu)=Pr[Aexp(2GTΘ2)u]=Pr[Θ12GT|ln(uA)|]=1FΘ[12GT|ln(uA)|]=Q[sσ,1σ12GT|ln(uA)|](u<A).
Pa=Q[sσ,1σ12GT|ln(aA)|](a<A).
α=(RM2σN2)ηTηR(λ4πd)2GR.
Pa=Pr(Ua)=Q[sσ,1xln(2xya)].
minimizexy,subjecttoPa=Q[sσ,1xln(2xya)]=b;(b<1),
b=(1/x)ln(2xy/a)texp(t2+(s/σ)22)I0(stσ)dt.
dydx=Pa/xPa/y=(1lnxln2y+lna)yx.
2xy=ea,
Q(sσ,1x)=b.
x=xs=1[Q1(s/σ,b)]2,
GT,s=1σ2[Q1(s/σ,b)]2,
Q(0,1x)=exp(12x)=b.
x=xs0=1[Q1(0,b)]2=12ln(1/b).
GT,0=12σ2ln(1/b),
r=xs0xs=GT,0GT,s=[Q1(s/σ,b)]22ln(1/b).
d2ydx2|x=xs=yx2=ea2[Q1(sσ,b)]6>0.
ymin=ea2[Q1(sσ,b)]2.
ymin*=2eaymin.
ymin0=ea2[Q1(0,b)]2=ealn(1b).
r=yminymin0=[Q1(s/σ,b)]22ln(1/b).
r=PT,minPT0,min=[Q1(s/σ,b)]22ln(1/b),

Metrics