Abstract

The excess loss and output optical power ratio of symmetrical and asymmetrical Y-branch couplers for plastic optical fibers (POFs) are studied in this work. A ray-tracing model for the Y-branch coupler is derived to investigate the effect of coupling parameters on its optical performance. The coupling parameters, namely coupling angle, axial displacement, and refractive index of filling medium between the emitting-end and receiving-end POFs, are studied. The simulated and measured results indicate that the coupling efficiency is sensitive to all these coupling parameters. A minimum excess loss of approximately 0.83 dB is observed for the symmetrical Y-branch coupler. It is found that both the excess loss and the output power ratio are increased with the increase of the refractive index of the filling medium and the total coupling angle (α+β) for the asymmetrical Y-branch coupler. The experimental results indicate that the maximum output power ratio P1P2 is found to be 3.81 for excess loss of less than 2.8 dB for the asymmetrical Y-branch coupler.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004).
    [CrossRef]
  2. H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers,” Jpn. J. Appl. Phys. 44, 8504–8506 (2005).
    [CrossRef]
  3. J. Kruszewski, M. Borecki, and M. Beblowska, “Designing and performance of the asymmetrical coupler of plastic optical fibers,” Proc. SPIE 5576, 228–233 (2004).
    [CrossRef]
  4. H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated polymeric optical waveguide devices with large core connectable to plastic optical fiber using thermo-plastic and thermo-curable resins,” J. Lightwave Technol. 24, 919–926 (2006).
    [CrossRef]
  5. C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
    [CrossRef]
  6. M. Kagami, K. Hasegawa, and H. Ito, “Simultaneous fabrication of optical channel waveguides and out-of-plane branching mirrors from a polymeric slab structure,” Appl. Opt. 36, 7700–7707 (1997).
    [CrossRef]
  7. J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, and T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” J. Lightwave Technol. 16, 1024–1029 (1998).
    [CrossRef]
  8. K. Enbutsu, M. Hikita, R. Yoshimura, S. Tomaru, and S. Imamura, “Multimode polymeric optical waveguides with high thermal stability using UV cured epoxy resins,” Jpn. J. Appl. Phys. 37, 3662–3664 (1998).
    [CrossRef]
  9. O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
    [CrossRef]
  10. J.-S. Kim, J.-W. Kang, and J. J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).
    [CrossRef]
  11. Y. Y. Maruo, S. Sasaki, and T. Tamamura, “Channel-optical-waveguide fabrication based on electron-beam irradiation of polyimides,” Appl. Opt. 34, 1047–1052 (1995).
    [CrossRef]
  12. M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
    [CrossRef]
  13. D. Fischer and E. Voges, “Multimode polymeric waveguide devices fabricated by two-component injection molding,” Electron. Lett. 33, 1626–1627 (1997).
    [CrossRef]
  14. Y. Takezawa, S. Akasaka, S. Ohara, T. Ishibashi, H. Asano, and N. Taketani, “Low excess losses in a Y-branching plastic optical waveguide formed through injection molding,” Appl. Opt. 33, 2307–2312 (1994).
    [CrossRef]
  15. T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “Fabrication of optical 1×2 POF couplers using the laser-LIGA technique,” Proc. SPIE 4941, 121–132 (2003).
    [CrossRef]
  16. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  17. G. Aldabaldetreku, G. Durana, J. Zubia, J. Arrue, and F. Jiménez, “Analysis of intrinsic coupling loss in multi-step index optical fibers,” Opt. Express 13, 3283–3295 (2005).
    [CrossRef]
  18. J. Zubia, U. Irusta, A. Aguire, and J. Arrue, “Design and measurement of POF active couplers,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, 1997 (LEOS) (IEEE, 1997), pp. 48–49.
  19. J. Zubia, U. Irusta, J. Arrue, and A. Aguire, “Design and characterization of a plastic optical fiber active coupler,” IEEE Photon. Technol. Lett. 10, 1578–1580 (1998).
    [CrossRef]
  20. J. Zubia, G. Durana, J. Arrue, and I. Garcis, “Design and performance of active coupler for plastic optical fibres,” Electron. Lett. 38, 65–67 (2002).
    [CrossRef]
  21. G. Aldabaldetreku, G. Durana, J. Zubia, J. Arrue, H. Poisel, and M. A. Losada, “Investigation and comparison of analytical, numerical, and experimentally measured coupling losses for multi-step index optical fibers,” Opt. Express 13, 4012–4036 (2005).
    [CrossRef]
  22. G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997–1002 (2003).
    [CrossRef]
  23. Y. C. Chen, L. W. Chen, and P. C. Chen, “The combined effect of bend and elongation on polymer optical fiber losses,” Opt. Lett. 30, 230–232 (2005).
    [CrossRef]
  24. W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF—Polymer Optical Fibers for Data Communication (Springer, 2002).

2006 (1)

2005 (4)

2004 (2)

J. Kruszewski, M. Borecki, and M. Beblowska, “Designing and performance of the asymmetrical coupler of plastic optical fibers,” Proc. SPIE 5576, 228–233 (2004).
[CrossRef]

H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004).
[CrossRef]

2003 (4)

J.-S. Kim, J.-W. Kang, and J. J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).
[CrossRef]

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “Fabrication of optical 1×2 POF couplers using the laser-LIGA technique,” Proc. SPIE 4941, 121–132 (2003).
[CrossRef]

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997–1002 (2003).
[CrossRef]

2002 (1)

J. Zubia, G. Durana, J. Arrue, and I. Garcis, “Design and performance of active coupler for plastic optical fibres,” Electron. Lett. 38, 65–67 (2002).
[CrossRef]

2001 (1)

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

1999 (1)

O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
[CrossRef]

1998 (3)

K. Enbutsu, M. Hikita, R. Yoshimura, S. Tomaru, and S. Imamura, “Multimode polymeric optical waveguides with high thermal stability using UV cured epoxy resins,” Jpn. J. Appl. Phys. 37, 3662–3664 (1998).
[CrossRef]

J. Zubia, U. Irusta, J. Arrue, and A. Aguire, “Design and characterization of a plastic optical fiber active coupler,” IEEE Photon. Technol. Lett. 10, 1578–1580 (1998).
[CrossRef]

J. Kobayashi, T. Matsuura, Y. Hida, S. Sasaki, and T. Maruno, “Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches,” J. Lightwave Technol. 16, 1024–1029 (1998).
[CrossRef]

1997 (2)

M. Kagami, K. Hasegawa, and H. Ito, “Simultaneous fabrication of optical channel waveguides and out-of-plane branching mirrors from a polymeric slab structure,” Appl. Opt. 36, 7700–7707 (1997).
[CrossRef]

D. Fischer and E. Voges, “Multimode polymeric waveguide devices fabricated by two-component injection molding,” Electron. Lett. 33, 1626–1627 (1997).
[CrossRef]

1995 (1)

1994 (1)

Aguire, A.

J. Zubia, U. Irusta, J. Arrue, and A. Aguire, “Design and characterization of a plastic optical fiber active coupler,” IEEE Photon. Technol. Lett. 10, 1578–1580 (1998).
[CrossRef]

J. Zubia, U. Irusta, A. Aguire, and J. Arrue, “Design and measurement of POF active couplers,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, 1997 (LEOS) (IEEE, 1997), pp. 48–49.

Ahn, S.-H.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Akasaka, S.

Aldabaldetreku, G.

Arrue, J.

G. Aldabaldetreku, G. Durana, J. Zubia, J. Arrue, and F. Jiménez, “Analysis of intrinsic coupling loss in multi-step index optical fibers,” Opt. Express 13, 3283–3295 (2005).
[CrossRef]

G. Aldabaldetreku, G. Durana, J. Zubia, J. Arrue, H. Poisel, and M. A. Losada, “Investigation and comparison of analytical, numerical, and experimentally measured coupling losses for multi-step index optical fibers,” Opt. Express 13, 4012–4036 (2005).
[CrossRef]

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997–1002 (2003).
[CrossRef]

J. Zubia, G. Durana, J. Arrue, and I. Garcis, “Design and performance of active coupler for plastic optical fibres,” Electron. Lett. 38, 65–67 (2002).
[CrossRef]

J. Zubia, U. Irusta, J. Arrue, and A. Aguire, “Design and characterization of a plastic optical fiber active coupler,” IEEE Photon. Technol. Lett. 10, 1578–1580 (1998).
[CrossRef]

J. Zubia, U. Irusta, A. Aguire, and J. Arrue, “Design and measurement of POF active couplers,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, 1997 (LEOS) (IEEE, 1997), pp. 48–49.

Asano, H.

Beblowska, M.

J. Kruszewski, M. Borecki, and M. Beblowska, “Designing and performance of the asymmetrical coupler of plastic optical fibers,” Proc. SPIE 5576, 228–233 (2004).
[CrossRef]

Bernhard, W.

O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
[CrossRef]

Borecki, M.

J. Kruszewski, M. Borecki, and M. Beblowska, “Designing and performance of the asymmetrical coupler of plastic optical fibers,” Proc. SPIE 5576, 228–233 (2004).
[CrossRef]

Bräuer, A.

O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
[CrossRef]

Braune, T.

T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “Fabrication of optical 1×2 POF couplers using the laser-LIGA technique,” Proc. SPIE 4941, 121–132 (2003).
[CrossRef]

Buestrich, R.

O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
[CrossRef]

Chen, L. W.

Chen, P. C.

Chen, Y. C.

Choi, C.-G.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Dadic, D.

T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “Fabrication of optical 1×2 POF couplers using the laser-LIGA technique,” Proc. SPIE 4941, 121–132 (2003).
[CrossRef]

Dannberg, P.

O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
[CrossRef]

Daum, W.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF—Polymer Optical Fibers for Data Communication (Springer, 2002).

Durana, G.

Enbutsu, K.

K. Enbutsu, M. Hikita, R. Yoshimura, S. Tomaru, and S. Imamura, “Multimode polymeric optical waveguides with high thermal stability using UV cured epoxy resins,” Jpn. J. Appl. Phys. 37, 3662–3664 (1998).
[CrossRef]

Fiedler, T. M.

O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
[CrossRef]

Fischer, D.

D. Fischer and E. Voges, “Multimode polymeric waveguide devices fabricated by two-component injection molding,” Electron. Lett. 33, 1626–1627 (1997).
[CrossRef]

Garcis, I.

J. Zubia, G. Durana, J. Arrue, and I. Garcis, “Design and performance of active coupler for plastic optical fibres,” Electron. Lett. 38, 65–67 (2002).
[CrossRef]

Han, S.-P.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Hasegawa, K.

Hida, Y.

Hikita, M.

K. Enbutsu, M. Hikita, R. Yoshimura, S. Tomaru, and S. Imamura, “Multimode polymeric optical waveguides with high thermal stability using UV cured epoxy resins,” Jpn. J. Appl. Phys. 37, 3662–3664 (1998).
[CrossRef]

Imamura, S.

K. Enbutsu, M. Hikita, R. Yoshimura, S. Tomaru, and S. Imamura, “Multimode polymeric optical waveguides with high thermal stability using UV cured epoxy resins,” Jpn. J. Appl. Phys. 37, 3662–3664 (1998).
[CrossRef]

Irusta, U.

J. Zubia, U. Irusta, J. Arrue, and A. Aguire, “Design and characterization of a plastic optical fiber active coupler,” IEEE Photon. Technol. Lett. 10, 1578–1580 (1998).
[CrossRef]

J. Zubia, U. Irusta, A. Aguire, and J. Arrue, “Design and measurement of POF active couplers,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, 1997 (LEOS) (IEEE, 1997), pp. 48–49.

Ishibashi, T.

Ito, H.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

M. Kagami, K. Hasegawa, and H. Ito, “Simultaneous fabrication of optical channel waveguides and out-of-plane branching mirrors from a polymeric slab structure,” Appl. Opt. 36, 7700–7707 (1997).
[CrossRef]

Jeong, M.-Y.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Jiménez, F.

Jordan, S.

H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated polymeric optical waveguide devices with large core connectable to plastic optical fiber using thermo-plastic and thermo-curable resins,” J. Lightwave Technol. 24, 919–926 (2006).
[CrossRef]

H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004).
[CrossRef]

Kagami, M.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

M. Kagami, K. Hasegawa, and H. Ito, “Simultaneous fabrication of optical channel waveguides and out-of-plane branching mirrors from a polymeric slab structure,” Appl. Opt. 36, 7700–7707 (1997).
[CrossRef]

Kaino, T.

H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated polymeric optical waveguide devices with large core connectable to plastic optical fiber using thermo-plastic and thermo-curable resins,” J. Lightwave Technol. 24, 919–926 (2006).
[CrossRef]

H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers,” Jpn. J. Appl. Phys. 44, 8504–8506 (2005).
[CrossRef]

H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004).
[CrossRef]

Kang, J.-W.

J.-S. Kim, J.-W. Kang, and J. J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).
[CrossRef]

Kim, B. C.

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

Kim, J. J.

J.-S. Kim, J.-W. Kang, and J. J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).
[CrossRef]

Kim, J.-S.

J.-S. Kim, J.-W. Kang, and J. J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).
[CrossRef]

Klotzbuecher, T.

T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “Fabrication of optical 1×2 POF couplers using the laser-LIGA technique,” Proc. SPIE 4941, 121–132 (2003).
[CrossRef]

Kobayashi, J.

Koch, A.

T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “Fabrication of optical 1×2 POF couplers using the laser-LIGA technique,” Proc. SPIE 4941, 121–132 (2003).
[CrossRef]

Krauser, J.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF—Polymer Optical Fibers for Data Communication (Springer, 2002).

Kruszewski, J.

J. Kruszewski, M. Borecki, and M. Beblowska, “Designing and performance of the asymmetrical coupler of plastic optical fibers,” Proc. SPIE 5576, 228–233 (2004).
[CrossRef]

Losada, M. A.

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).

Maruno, T.

Maruo, Y. Y.

Mateo, J.

Matsuura, T.

Mizuno, H.

H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated polymeric optical waveguide devices with large core connectable to plastic optical fiber using thermo-plastic and thermo-curable resins,” J. Lightwave Technol. 24, 919–926 (2006).
[CrossRef]

H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers,” Jpn. J. Appl. Phys. 44, 8504–8506 (2005).
[CrossRef]

H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004).
[CrossRef]

Ohama, M.

H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated polymeric optical waveguide devices with large core connectable to plastic optical fiber using thermo-plastic and thermo-curable resins,” J. Lightwave Technol. 24, 919–926 (2006).
[CrossRef]

H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers,” Jpn. J. Appl. Phys. 44, 8504–8506 (2005).
[CrossRef]

H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004).
[CrossRef]

Ohara, S.

Okamoto, N.

H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated polymeric optical waveguide devices with large core connectable to plastic optical fiber using thermo-plastic and thermo-curable resins,” J. Lightwave Technol. 24, 919–926 (2006).
[CrossRef]

H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers,” Jpn. J. Appl. Phys. 44, 8504–8506 (2005).
[CrossRef]

H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004).
[CrossRef]

Poisel, H.

Popall, M.

O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
[CrossRef]

Rösch, O. S.

O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
[CrossRef]

Sasaki, S.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).

Sprzagala, M.

T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “Fabrication of optical 1×2 POF couplers using the laser-LIGA technique,” Proc. SPIE 4941, 121–132 (2003).
[CrossRef]

Sugihara, O.

H. Mizuno, O. Sugihara, S. Jordan, N. Okamoto, M. Ohama, and T. Kaino, “Replicated polymeric optical waveguide devices with large core connectable to plastic optical fiber using thermo-plastic and thermo-curable resins,” J. Lightwave Technol. 24, 919–926 (2006).
[CrossRef]

H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers,” Jpn. J. Appl. Phys. 44, 8504–8506 (2005).
[CrossRef]

H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004).
[CrossRef]

Taketani, N.

Takezawa, Y.

Tamamura, T.

Tomaru, S.

K. Enbutsu, M. Hikita, R. Yoshimura, S. Tomaru, and S. Imamura, “Multimode polymeric optical waveguides with high thermal stability using UV cured epoxy resins,” Jpn. J. Appl. Phys. 37, 3662–3664 (1998).
[CrossRef]

Voges, E.

D. Fischer and E. Voges, “Multimode polymeric waveguide devices fabricated by two-component injection molding,” Electron. Lett. 33, 1626–1627 (1997).
[CrossRef]

Yamashita, T.

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

Yoshimura, R.

K. Enbutsu, M. Hikita, R. Yoshimura, S. Tomaru, and S. Imamura, “Multimode polymeric optical waveguides with high thermal stability using UV cured epoxy resins,” Jpn. J. Appl. Phys. 37, 3662–3664 (1998).
[CrossRef]

Zamzow, P. E.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF—Polymer Optical Fibers for Data Communication (Springer, 2002).

Ziemann, O.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF—Polymer Optical Fibers for Data Communication (Springer, 2002).

Zubia, J.

G. Aldabaldetreku, G. Durana, J. Zubia, J. Arrue, and F. Jiménez, “Analysis of intrinsic coupling loss in multi-step index optical fibers,” Opt. Express 13, 3283–3295 (2005).
[CrossRef]

G. Aldabaldetreku, G. Durana, J. Zubia, J. Arrue, H. Poisel, and M. A. Losada, “Investigation and comparison of analytical, numerical, and experimentally measured coupling losses for multi-step index optical fibers,” Opt. Express 13, 4012–4036 (2005).
[CrossRef]

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, “Dependence of bending losses on cladding thickness in plastic optical fibers,” Appl. Opt. 42, 997–1002 (2003).
[CrossRef]

J. Zubia, G. Durana, J. Arrue, and I. Garcis, “Design and performance of active coupler for plastic optical fibres,” Electron. Lett. 38, 65–67 (2002).
[CrossRef]

J. Zubia, U. Irusta, J. Arrue, and A. Aguire, “Design and characterization of a plastic optical fiber active coupler,” IEEE Photon. Technol. Lett. 10, 1578–1580 (1998).
[CrossRef]

J. Zubia, U. Irusta, A. Aguire, and J. Arrue, “Design and measurement of POF active couplers,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, 1997 (LEOS) (IEEE, 1997), pp. 48–49.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

M. Kagami, T. Yamashita, and H. Ito, “Light-induced self-written three-dimensional optical waveguide,” Appl. Phys. Lett. 79, 1079–1081 (2001).
[CrossRef]

Electron. Lett. (2)

D. Fischer and E. Voges, “Multimode polymeric waveguide devices fabricated by two-component injection molding,” Electron. Lett. 33, 1626–1627 (1997).
[CrossRef]

J. Zubia, G. Durana, J. Arrue, and I. Garcis, “Design and performance of active coupler for plastic optical fibres,” Electron. Lett. 38, 65–67 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. Zubia, U. Irusta, J. Arrue, and A. Aguire, “Design and characterization of a plastic optical fiber active coupler,” IEEE Photon. Technol. Lett. 10, 1578–1580 (1998).
[CrossRef]

C.-G. Choi, S.-P. Han, B. C. Kim, S.-H. Ahn, and M.-Y. Jeong, “Fabrication of large-core 1×16 optical power splitters in polymers using hot-embossing process,” IEEE Photon. Technol. Lett. 15, 825–827 (2003).
[CrossRef]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (4)

K. Enbutsu, M. Hikita, R. Yoshimura, S. Tomaru, and S. Imamura, “Multimode polymeric optical waveguides with high thermal stability using UV cured epoxy resins,” Jpn. J. Appl. Phys. 37, 3662–3664 (1998).
[CrossRef]

H. Mizuno, S. Jordan, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Polymeric optical waveguide with plastic optical fiber guides for passive alignment fabricated by hot embossing,” Jpn. J. Appl. Phys. 43, L1496–L1498 (2004).
[CrossRef]

H. Mizuno, O. Sugihara, T. Kaino, N. Okamoto, and M. Ohama, “Compact Y-branch-type polymeric optical waveguide devices with large-core connectable to plastic optical fibers,” Jpn. J. Appl. Phys. 44, 8504–8506 (2005).
[CrossRef]

J.-S. Kim, J.-W. Kang, and J. J. Kim, “Simple and low cost fabrication of thermally stable polymeric multimode waveguides using a UV-curable epoxy,” Jpn. J. Appl. Phys. 42, 1277–1279 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (3)

T. Klotzbuecher, T. Braune, D. Dadic, M. Sprzagala, and A. Koch, “Fabrication of optical 1×2 POF couplers using the laser-LIGA technique,” Proc. SPIE 4941, 121–132 (2003).
[CrossRef]

J. Kruszewski, M. Borecki, and M. Beblowska, “Designing and performance of the asymmetrical coupler of plastic optical fibers,” Proc. SPIE 5576, 228–233 (2004).
[CrossRef]

O. S. Rösch, W. Bernhard, T. M. Fiedler, P. Dannberg, A. Bräuer, R. Buestrich, and M. Popall, “High performance low cost fabrication method for integrated polymer optical devices,” Proc. SPIE 3799, 214–224 (1999).
[CrossRef]

Other (3)

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).

J. Zubia, U. Irusta, A. Aguire, and J. Arrue, “Design and measurement of POF active couplers,” in Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting, 1997 (LEOS) (IEEE, 1997), pp. 48–49.

W. Daum, J. Krauser, P. E. Zamzow, and O. Ziemann, POF—Polymer Optical Fibers for Data Communication (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic illustration of POFs and associated rays.

Fig. 2.
Fig. 2.

Geometrical model of rays in the receiving-end POF.

Fig. 3.
Fig. 3.

Experimental setup used to measure excess loss in Y-branch couplers: (a) experimental configuration, (b) Y-branch coupler, (c) Y-branch geometrical model.

Fig. 4.
Fig. 4.

Variation of excess loss with different axial displacements.

Fig. 5.
Fig. 5.

Expansion angles of rays exiting from the end of the emitting-end POF.

Fig. 6.
Fig. 6.

Excess loss contour map for varied axial displacement and coupling angle.

Fig. 7.
Fig. 7.

Variation of excess loss with coupling angle.

Fig. 8.
Fig. 8.

The optical performance of asymmetrical Y-branch couplers with different coupling angles: (a) excess loss, (b) power ratio.

Fig. 9.
Fig. 9.

The optical performance of asymmetrical Y-branch couplers with different refractive indices: (a) excess loss, (b) power ratio.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ro=rs+rh
ro=Rf+(hj+kk).
rO=(rhcosθ1+Scosθ2)i+(rhsinθ1+Ssinθ2)j+Scotθok
rO=Rfcosθ3i+(Rfsinθ3cosβ+h)j+(Rfsinθ3sinβ+k)k.
S=k+htanβrhsinθ1tanβcotθo+tanβsinθ2,
θ3=tan1[kScotθosinβ(rhcosθ1+Scosθ2)],
Rf=rhcosθ1+Scosθ2cosθ3=rhsinθ1+Ssinθ2hcosβsinθ3=kScotθosinβsinθ3.
cosαi=sinθocosθ2cosθ3+sinθosinθ2sinθ3cosβcosθosinθ3sinβ
αi=cos1(sinθocosθ2cosθ3+sinθosinθ2sinθ3cosβcosθosinθ3sinβ).
αi=cos1(nmncocosαi).
P*P=exp(TrN),
Tr=4cosαi(cos2αicos2αc)1/2[cosαi+(cos2αicos2αc)1/2]2,
E.L.=10log[(PFPin)2×(P1+P2)Pray]=20log(PinPF)+10log[Pray(P1+P2)],
{xyz}=[1000cosβsinβ0sinβcosβ]{xyz}.
i=i,j=cosβjsinβk,k=sinβj+cosβk.
rO=rs+rh=Rf+(hj+kk),
rs=(Scosθ2)i+(Ssinθ2)j+Scotθok,rh=rhcosθ1i+rhsinθ1j,Rf=Rfcosθ3i+Rfsinθ3(cosβjsinβk)=Rf(cosθ3i+sinθ3cosβjsinθ3sinβk).
rO=(rhcosθ1+Scosθ2)i+(rhsinθ1+Ssinθ2)j+Scotθok=Rfcosθ3i+(Rfsinθ3cosβ+h)j+(Rfsinθ3sinβ+k)k.
cosαi=Rf·rsRfrs=(Rfcosθ3i+Rfsinθ3j)[(Scosθ2)i+(Ssinθ2)j+Scotθok]RfSsinθo=RfS[cosθ3i+sinθ3(cosβjsinβk)]·[(cosθ2)i+(sinθ2)j+cotθok]RfSsinθo=sinθo(cosθ2cosθ3+sinθ2sinθ3cosβcotθosinθ3sinβ)=sinθocosθ2cosθ3+sinθosinθ2sinθ3cosβcosθosinθ3sinβ.

Metrics