Abstract

Copper island films have been prepared by thermal evaporation in vacuum and characterized by in situ as well as ex situ spectrophotometry. The parallel investigation of the island morphology by means of transmission electron microscopy allowed us to establish a clear correlation between film structure and optical properties. The effective optical constants of the copper island films could be determined by means of a fit of their ex situ transmission and reflection spectra. The effective optical constants have been used for designing and preparing optical multilayer coatings applicable for attenuator or color filter specifications. Measured characteristics of the multilayer coatings are in very good agreement with the calculated spectra.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 in Springer Series in Material Science (Springer-Verlag, 1995), pp. 13–152.
  2. D. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445(1908).
    [CrossRef]
  3. M. Born and E. Wolf, Principles of Optics (Pergamon, 1968), pp. 633–665.
  4. L. D. Landau and E. M. Lifschitz, Lehrbuch der theoretischen Bd. Physik VIII: Elektrodynamik der Kontinua [Textbook of Theoretical Physics, Vol. 8: Electrodynamics of Continua] (Akademie-Verlag, 1985), pp. 23–35.
  5. F. Stietz and F. Träger, “Monodisperse metallcluster auf oberflächen,” Phys. Bl. 55, 57–60, (1999).
  6. A. Wokaun, “Surface-enhanced electromagnetic processes,” Solid State Phys. 38, 223–294 (1984).
    [CrossRef]
  7. T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
    [CrossRef]
  8. J. M. Gerardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
    [CrossRef]
  9. M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley VCH, 2011), pp. 317–341.
  10. A. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” Eur. Phys. J. D 6, 365–373 (1999).
    [CrossRef]
  11. A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
    [CrossRef]
  12. T. V. Amotchkina, V. Janicki, J. Sancho-Parramon, A. V. Tikhonravov, M. K. Trubetskov, and H. Zorc, “General approach to reliable characterization of thin metal films,” Appl. Opt. 50, 1453–1464 (2011).
    [CrossRef]
  13. O. Stenzel, P. Heger, M. Bischoff, S. Wilbrandt, and N. Kaiser, “Novel optical coating concepts based on nanostructured thin solid films,” in Physics, Chemistry and Application of Nanostructures, V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, eds. (World Scientific, 2005), pp. 28–35.
  14. O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski,, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162 (1995).
    [CrossRef]
  15. T. V. Amotchkina, M. K. Trubetskov, A. V. Tikhonravov, V. Janicki, J. Sancho-Parramon, and H. Zorc, “Comparison of two techniques for reliable characterization of thin metal-dielectric films,” Appl. Opt. 50, 6189–6197 (2011).
    [CrossRef]
  16. V. Janicki, J. Sancho-Parramon, and H. Zorc, “Gradient silver nanoparticle layers in absorbing coatings—experimental study,” Appl. Opt. 50, C228–C231 (2011).
    [CrossRef]
  17. V. Janicki, T. Amotchkina, J. Sancho-Parramon, H. Zorc, M. K. Trubetskov, and A. V. Tikhonravov, “Design and production of bicolour reflecting coatings with Au metal island films,” Opt. Express 19, 25521–25527 (2011).
    [CrossRef]
  18. S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
    [CrossRef]
  19. L. Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers,” Opt. Mater. Express 1, 128–137 (2011).
    [CrossRef]
  20. S. Y. Yim, H. G. Ahn, K. C. Je, M. Choi, C. W. Park, H. Ju, and S. H. Park, “Observation of red-shifted strong surface plasmon scattering in single Cu nanowires,” Opt. Express 15, 10282–10287 (2007).
    [CrossRef]
  21. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
    [CrossRef]
  22. O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische modellierung der NIR/VIS/UV-optischen konstanten dünner optischer schichten im rahmen des oszillatormodells, ” Vak. Forsch. Prax. 21, 15–23 (2009).
    [CrossRef]
  23. A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
    [CrossRef]
  24. Database of the UNIGIT grating solver software; www.unigit.com .
  25. O. Stenzel, The Physics of Thin Film Optical Spectra: an Introduction (Springer-Verlag, 2005), pp. 45–55.
  26. O. Stenzel, U. Schulz, and N. Kaiser, “Tailoring optical and non-optical properties of interference coating materials through the explicit use of small-scale optical inhomogeneities,” Adv. Opt. Technol. 1, 79–89 (2012).
    [CrossRef]
  27. O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
    [CrossRef]

2012 (1)

O. Stenzel, U. Schulz, and N. Kaiser, “Tailoring optical and non-optical properties of interference coating materials through the explicit use of small-scale optical inhomogeneities,” Adv. Opt. Technol. 1, 79–89 (2012).
[CrossRef]

2011 (5)

2009 (2)

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische modellierung der NIR/VIS/UV-optischen konstanten dünner optischer schichten im rahmen des oszillatormodells, ” Vak. Forsch. Prax. 21, 15–23 (2009).
[CrossRef]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

2008 (1)

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

2007 (1)

2006 (1)

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

1999 (4)

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
[CrossRef]

A. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” Eur. Phys. J. D 6, 365–373 (1999).
[CrossRef]

A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
[CrossRef]

F. Stietz and F. Träger, “Monodisperse metallcluster auf oberflächen,” Phys. Bl. 55, 57–60, (1999).

1995 (1)

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski,, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162 (1995).
[CrossRef]

1984 (1)

A. Wokaun, “Surface-enhanced electromagnetic processes,” Solid State Phys. 38, 223–294 (1984).
[CrossRef]

1982 (1)

J. M. Gerardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
[CrossRef]

1974 (1)

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

1908 (1)

D. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445(1908).
[CrossRef]

Ahn, H. G.

Albert, J.

Amotchkina, T.

Amotchkina, T. V.

Ausloos, M.

J. M. Gerardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
[CrossRef]

Barry, S. T.

Beckers, U.

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski,, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162 (1995).
[CrossRef]

Bischoff, M.

O. Stenzel, P. Heger, M. Bischoff, S. Wilbrandt, and N. Kaiser, “Novel optical coating concepts based on nanostructured thin solid films,” in Physics, Chemistry and Application of Nanostructures, V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, eds. (World Scientific, 2005), pp. 28–35.

Bitzer, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1968), pp. 633–665.

Choi, M.

Chuvilin, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Coyle, J. P.

Ebert, J.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Friedrich, K.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische modellierung der NIR/VIS/UV-optischen konstanten dünner optischer schichten im rahmen des oszillatormodells, ” Vak. Forsch. Prax. 21, 15–23 (2009).
[CrossRef]

Gartz, M.

A. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” Eur. Phys. J. D 6, 365–373 (1999).
[CrossRef]

Gerardy, J. M.

J. M. Gerardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
[CrossRef]

Grössl, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Heger, P.

O. Stenzel, P. Heger, M. Bischoff, S. Wilbrandt, and N. Kaiser, “Novel optical coating concepts based on nanostructured thin solid films,” in Physics, Chemistry and Application of Nanostructures, V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, eds. (World Scientific, 2005), pp. 28–35.

Jakobs, S.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Janicki, V.

Je, K. C.

Ju, H.

Kachan, S.

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

Kaiser, N.

O. Stenzel, U. Schulz, and N. Kaiser, “Tailoring optical and non-optical properties of interference coating materials through the explicit use of small-scale optical inhomogeneities,” Adv. Opt. Technol. 1, 79–89 (2012).
[CrossRef]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische modellierung der NIR/VIS/UV-optischen konstanten dünner optischer schichten im rahmen des oszillatormodells, ” Vak. Forsch. Prax. 21, 15–23 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

O. Stenzel, P. Heger, M. Bischoff, S. Wilbrandt, and N. Kaiser, “Novel optical coating concepts based on nanostructured thin solid films,” in Physics, Chemistry and Application of Nanostructures, V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, eds. (World Scientific, 2005), pp. 28–35.

Kaiser, U.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Kaless, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Kinbara, A.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Kolitsch, A.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Kreibig, U.

A. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” Eur. Phys. J. D 6, 365–373 (1999).
[CrossRef]

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 in Springer Series in Material Science (Springer-Verlag, 1995), pp. 13–152.

Landau, L. D.

L. D. Landau and E. M. Lifschitz, Lehrbuch der theoretischen Bd. Physik VIII: Elektrodynamik der Kontinua [Textbook of Theoretical Physics, Vol. 8: Electrodynamics of Continua] (Akademie-Verlag, 1985), pp. 23–35.

Lebedev, A.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
[CrossRef]

Lebedev, A. N.

A. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” Eur. Phys. J. D 6, 365–373 (1999).
[CrossRef]

A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
[CrossRef]

Lifschitz, E. M.

L. D. Landau and E. M. Lifschitz, Lehrbuch der theoretischen Bd. Physik VIII: Elektrodynamik der Kontinua [Textbook of Theoretical Physics, Vol. 8: Electrodynamics of Continua] (Akademie-Verlag, 1985), pp. 23–35.

Mie, D. G.

D. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445(1908).
[CrossRef]

Munnik, F.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Park, C. W.

Park, S. H.

Ponyavina, A.

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

Quinten, M.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
[CrossRef]

M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley VCH, 2011), pp. 317–341.

Röder, M.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
[CrossRef]

Sancho-Parramon, J.

Schreiber, M.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
[CrossRef]

Schulz, U.

O. Stenzel, U. Schulz, and N. Kaiser, “Tailoring optical and non-optical properties of interference coating materials through the explicit use of small-scale optical inhomogeneities,” Adv. Opt. Technol. 1, 79–89 (2012).
[CrossRef]

Shao, L. Y.

Stendal, A.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
[CrossRef]

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski,, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162 (1995).
[CrossRef]

Stenzel, O.

O. Stenzel, U. Schulz, and N. Kaiser, “Tailoring optical and non-optical properties of interference coating materials through the explicit use of small-scale optical inhomogeneities,” Adv. Opt. Technol. 1, 79–89 (2012).
[CrossRef]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische modellierung der NIR/VIS/UV-optischen konstanten dünner optischer schichten im rahmen des oszillatormodells, ” Vak. Forsch. Prax. 21, 15–23 (2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
[CrossRef]

A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
[CrossRef]

A. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” Eur. Phys. J. D 6, 365–373 (1999).
[CrossRef]

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski,, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162 (1995).
[CrossRef]

O. Stenzel, P. Heger, M. Bischoff, S. Wilbrandt, and N. Kaiser, “Novel optical coating concepts based on nanostructured thin solid films,” in Physics, Chemistry and Application of Nanostructures, V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, eds. (World Scientific, 2005), pp. 28–35.

O. Stenzel, The Physics of Thin Film Optical Spectra: an Introduction (Springer-Verlag, 2005), pp. 45–55.

Stietz, F.

F. Stietz and F. Träger, “Monodisperse metallcluster auf oberflächen,” Phys. Bl. 55, 57–60, (1999).

Tikhonravov, A. V.

Träger, F.

F. Stietz and F. Träger, “Monodisperse metallcluster auf oberflächen,” Phys. Bl. 55, 57–60, (1999).

Treichel, O.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Trubetskov, M. K.

Vinnichenko, M.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Voigtsberger, K.

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski,, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162 (1995).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 in Springer Series in Material Science (Springer-Verlag, 1995), pp. 13–152.

von Borczyskowski, C.

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski,, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162 (1995).
[CrossRef]

Wilbrandt, S.

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische modellierung der NIR/VIS/UV-optischen konstanten dünner optischer schichten im rahmen des oszillatormodells, ” Vak. Forsch. Prax. 21, 15–23 (2009).
[CrossRef]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski,, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162 (1995).
[CrossRef]

O. Stenzel, P. Heger, M. Bischoff, S. Wilbrandt, and N. Kaiser, “Novel optical coating concepts based on nanostructured thin solid films,” in Physics, Chemistry and Application of Nanostructures, V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, eds. (World Scientific, 2005), pp. 28–35.

Wokaun, A.

A. Wokaun, “Surface-enhanced electromagnetic processes,” Solid State Phys. 38, 223–294 (1984).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1968), pp. 633–665.

Wunderlich, B.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Wüthrich, S.

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Yim, S. Y.

Yoshida, S.

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

Zahn, D. R. T.

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
[CrossRef]

Zorc, H.

Adv. Opt. Technol. (1)

O. Stenzel, U. Schulz, and N. Kaiser, “Tailoring optical and non-optical properties of interference coating materials through the explicit use of small-scale optical inhomogeneities,” Adv. Opt. Technol. 1, 79–89 (2012).
[CrossRef]

Ann. Phys. (1)

D. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Ann. Phys. 330, 377–445(1908).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

S. Kachan, O. Stenzel, and A. Ponyavina, “High-absorbing gradient multilayer coatings with silver nanoparticles,” Appl. Phys. B 84, 281–287 (2006).
[CrossRef]

Eur. Phys. J. D (1)

A. N. Lebedev, M. Gartz, U. Kreibig, and O. Stenzel, “Optical extinction by spherical particles in an absorbing medium: application to composite absorbing films,” Eur. Phys. J. D 6, 365–373 (1999).
[CrossRef]

Eur. Phys. J. D (1)

A. N. Lebedev and O. Stenzel, “Optical extinction of an assembly of spherical particles in an absorbing medium: application to silver clusters in absorbing organic materials,” Eur. Phys. J. D 7, 83–88 (1999).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

A. Lebedev, O. Stenzel, M. Quinten, A. Stendal, M. Röder, M. Schreiber, and D. R. T. Zahn, “A statistical approach for interpreting the optical spectra of metal island films: effects of multiple scattering in a statistical assembly of spheres,” J. Opt. A: Pure Appl. Opt. 1, 573–580, (1999).
[CrossRef]

J. Phys. D (1)

O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, C. von Borczyskowski,, “The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption,” J. Phys. D 28, 2154–2162 (1995).
[CrossRef]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Bl. (1)

F. Stietz and F. Träger, “Monodisperse metallcluster auf oberflächen,” Phys. Bl. 55, 57–60, (1999).

Phys. Rev. B (1)

J. M. Gerardy and M. Ausloos, “Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982).
[CrossRef]

Proc. SPIE (1)

S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-optical in-situ analysis of PIAD deposition processes,” Proc. SPIE 7101, 71010D (2008).
[CrossRef]

Solid State Phys. (1)

A. Wokaun, “Surface-enhanced electromagnetic processes,” Solid State Phys. 38, 223–294 (1984).
[CrossRef]

Thin Solid Films (2)

T. Yamaguchi, S. Yoshida, and A. Kinbara, “Optical effect of the substrate on the anomalous absorption of aggregated silver films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, A. Kaless, S. Wüthrich, O. Treichel, B. Wunderlich, M. Bitzer, and M. Grössl, “The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity,” Thin Solid Films 517, 6058–6068(2009).
[CrossRef]

Vak. Forsch. Prax. (1)

O. Stenzel, S. Wilbrandt, K. Friedrich, and N. Kaiser, “Realistische modellierung der NIR/VIS/UV-optischen konstanten dünner optischer schichten im rahmen des oszillatormodells, ” Vak. Forsch. Prax. 21, 15–23 (2009).
[CrossRef]

Other (7)

Database of the UNIGIT grating solver software; www.unigit.com .

O. Stenzel, The Physics of Thin Film Optical Spectra: an Introduction (Springer-Verlag, 2005), pp. 45–55.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1968), pp. 633–665.

L. D. Landau and E. M. Lifschitz, Lehrbuch der theoretischen Bd. Physik VIII: Elektrodynamik der Kontinua [Textbook of Theoretical Physics, Vol. 8: Electrodynamics of Continua] (Akademie-Verlag, 1985), pp. 23–35.

M. Quinten, Optical Properties of Nanoparticle Systems: Mie and Beyond (Wiley VCH, 2011), pp. 317–341.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 in Springer Series in Material Science (Springer-Verlag, 1995), pp. 13–152.

O. Stenzel, P. Heger, M. Bischoff, S. Wilbrandt, and N. Kaiser, “Novel optical coating concepts based on nanostructured thin solid films,” in Physics, Chemistry and Application of Nanostructures, V. E. Borisenko, S. V. Gaponenko, and V. S. Gurin, eds. (World Scientific, 2005), pp. 28–35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Main steps of the experimental work.

Fig. 2.
Fig. 2.

In situ transmittance of the CIFs 1b7b, 7. Film 7 is the one with the lowest transmittance.

Fig. 3.
Fig. 3.

Ex situ transmittance of the CIFs 1–7.

Fig. 4.
Fig. 4.

Calculated performance of the attenuator design (on left) and the blue transmission filter design (on right) for normal incidence as well as an incidence angle of 45°. Polarization is average.

Fig. 5.
Fig. 5.

Effective optical constants of the CIFs 1–7, as obtained from normal incidence transmission and reflection spectra.

Fig. 6.
Fig. 6.

The term nα as a function of wavenumber ν for films 1–7.

Fig. 7.
Fig. 7.

Lateral TEM images of the copper (island) films 1–2 and 4–7. The bar right on bottom of each image corresponds to a length of 50 nm.

Fig. 8.
Fig. 8.

Left: Assumed distribution of clusters with respect to depolarization factors. All length data are given in arbitrary units. Right: Simulated spectral behavior of nα for different filling factors (see legend on top right).

Fig. 9.
Fig. 9.

Spectral moments M0, M1 and M2 as obtained from the experiment (see legend on top) and for the model systems built from spheres, pancakes, and needles.

Fig. 10.
Fig. 10.

Measured performance of the attenuator (on left) and the blue transmission filter (on right) for normal incidence as well as an incidence angle of 45°. Polarization is average from measurements in s- and p-polarizations. Theoretical spectra from Figure 4 are included for comparison.

Fig. 11.
Fig. 11.

In situ transmission spectra recorded during the deposition of the blue transmission filter.

Fig. 12.
Fig. 12.

TEM cross section of the blue transmission filter (top) and the attenuator (bottom).

Tables (4)

Tables Icon

Table 1. Description of the CIFs

Tables Icon

Table 2. Multilayer Designs (for the Blue Transmission Filter, H=Ta2O5, L=SiO2)a

Tables Icon

Table 3. Deposition Parameters for the Attenuator Design

Tables Icon

Table 4. Deposition Parameters for the Blue Transmission Filter Design

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

N0Imε(ω)ωdω0n(ω)α(ω)dω,
M0absorption linen(ν)α(ν)dν,M11M0absorption linen(ν)α(ν)νdν,M21M0absorption linen(ν)α(ν)(νM1)2dν.
εmixtureεhostεhost+(εmixtureεhost)L=pεguestεhostεhost+(εguestεhost)L,
neff(λ)+ikeff(λ)=εmixture(λ).
Lj=lxlylz20ds(s+lj2){(s+lx2)(s+ly2)(s+lz2)}1/2j=x,y,z.
g(L)=12[gx(Lx)+gy(Ly)].
εmixture=εhost01g(L)1+p(1L)(εguestεhost)εhost+(εguestεhost)L1pL(εguestεhost)εhost+(εguestεhost)LdL01g(L)dL.

Metrics