Abstract

A high-density and -uniformity sub-100 nm surface-oxidized silicon nanocone forest structure is created and integrated onto the existing texturization microstructures on a photovoltaic device surface by a one-step high-throughput plasma-enhanced texturization method. We suppressed the broadband optical reflection on chemically textured grade-B silicon solar cells for up to 70.25% through this nanomanufacturing method. The performance of the solar cell is improved with the short-circuit current increased by 7.1%, fill factor increased by 7.0%, and conversion efficiency increased by 14.66%. Our method demonstrates the potential to improve the photovoltaic device performance with low-cost and high-throughput nanomanufacturing technology.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energ. 79, 78–85 (2005).
    [CrossRef]
  2. M. Yamaguchi, “III–V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75, 261–269 (2003).
    [CrossRef]
  3. L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
    [CrossRef]
  4. K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics Res. Appl. 12, 69–92 (2004).
    [CrossRef]
  5. M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).
  6. W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519(1961).
    [CrossRef]
  7. C. S. Solanki, Solar Photovoltaics: Fundamentals Technologies and Applications (PHI Learning, 2009).
  8. S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
    [CrossRef]
  9. B. Sopori, “Silicon nitride processing for control of optical and electronic properties of silicon solar cells,” J. Electron. Mater. 32, 1034–1042 (2003).
    [CrossRef]
  10. T. Minemoto, T. Mizuta, H. Takakura, and Y. Hamakawa, “Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells,” Sol. Energy Mater. Sol. Cells 91, 191–194 (2007).
    [CrossRef]
  11. J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng., R 70, 330–340 (2010).
    [CrossRef]
  12. C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
    [CrossRef]
  13. L. Escoubas, R. Bouffaron, V. Brissonneau, J. Simon, G. Berginc, F. Flory, and P. Torchio, “Sand-castle biperiodic pattern for spectral and angular broadening of antireflective properties,” Opt. Lett. 35, 1455–1457 (2010).
    [CrossRef]
  14. J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells 95, 2–6 (2011).
    [CrossRef]
  15. J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
    [CrossRef]
  16. J. E. Carey, C. H. Crouch, R. Younkin, E. Mazur, M. Sheehy, and C. Friend, “Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon,” in Proceedings of the 14th International IVMC, C. E. Hunt, A. G. Chakhovskoi, N. N. Chubun, and M. Hajra, eds. (IVMC, 2001), pp. 75–76.
  17. T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
    [CrossRef]
  18. C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
    [CrossRef]
  19. Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
    [CrossRef]
  20. H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
    [CrossRef]
  21. V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
    [CrossRef]
  22. C. Chang, J. Dominguez-Caballero, H. J. Choi, and G. Barbastathis, “Nanostructured gradient-index antireflection diffractive optics,” Opt. Lett. 36, 2354–2356 (2011).
    [CrossRef]
  23. R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45, 19–29 (1977).
    [CrossRef]
  24. Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011).
    [CrossRef]
  25. Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett. 98, 241904 (2011).
    [CrossRef]
  26. J. P. Coppe, Z. Xu, Y. Chen, and G. L. Liu, “Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules,” Nanotechnology 22, 245710 (2011).
    [CrossRef]
  27. Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
    [CrossRef]
  28. M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, “Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate,” Nanotechnology 22, 365203 (2011).
    [CrossRef]
  29. Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85, 1574–1578 (2011).
    [CrossRef]
  30. ASTM International, Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables (ASTM International, 2006).
  31. B. G. Streetman and S. K. Banerjee, Solid State Electronic Device (PHI Learning Private Limited, 2009).

2011 (8)

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells 95, 2–6 (2011).
[CrossRef]

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011).
[CrossRef]

Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett. 98, 241904 (2011).
[CrossRef]

J. P. Coppe, Z. Xu, Y. Chen, and G. L. Liu, “Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules,” Nanotechnology 22, 245710 (2011).
[CrossRef]

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
[CrossRef]

M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, “Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate,” Nanotechnology 22, 365203 (2011).
[CrossRef]

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85, 1574–1578 (2011).
[CrossRef]

C. Chang, J. Dominguez-Caballero, H. J. Choi, and G. Barbastathis, “Nanostructured gradient-index antireflection diffractive optics,” Opt. Lett. 36, 2354–2356 (2011).
[CrossRef]

2010 (2)

2009 (2)

L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

2007 (2)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

T. Minemoto, T. Mizuta, H. Takakura, and Y. Hamakawa, “Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells,” Sol. Energy Mater. Sol. Cells 91, 191–194 (2007).
[CrossRef]

2006 (3)

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
[CrossRef]

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

2005 (1)

M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energ. 79, 78–85 (2005).
[CrossRef]

2004 (2)

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics Res. Appl. 12, 69–92 (2004).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

2003 (2)

M. Yamaguchi, “III–V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75, 261–269 (2003).
[CrossRef]

B. Sopori, “Silicon nitride processing for control of optical and electronic properties of silicon solar cells,” J. Electron. Mater. 32, 1034–1042 (2003).
[CrossRef]

2002 (1)

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
[CrossRef]

2000 (1)

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[CrossRef]

1977 (1)

R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45, 19–29 (1977).
[CrossRef]

1961 (1)

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519(1961).
[CrossRef]

Araki, K.

M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energ. 79, 78–85 (2005).
[CrossRef]

Banerjee, S. K.

B. G. Streetman and S. K. Banerjee, Solid State Electronic Device (PHI Learning Private Limited, 2009).

Barbastathis, G.

Berginc, G.

Bouffaron, R.

Brandt, M. S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Branz, H. M.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Brissonneau, V.

Carey, J. E.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

J. E. Carey, C. H. Crouch, R. Younkin, E. Mazur, M. Sheehy, and C. Friend, “Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon,” in Proceedings of the 14th International IVMC, C. E. Hunt, A. G. Chakhovskoi, N. N. Chubun, and M. Hajra, eds. (IVMC, 2001), pp. 75–76.

Chang, C.

Chang, Y. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chattopadhyay, S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chen, K. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chen, L. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Chen, L. M.

L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

Chen, Y.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011).
[CrossRef]

Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett. 98, 241904 (2011).
[CrossRef]

J. P. Coppe, Z. Xu, Y. Chen, and G. L. Liu, “Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules,” Nanotechnology 22, 245710 (2011).
[CrossRef]

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
[CrossRef]

M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, “Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate,” Nanotechnology 22, 365203 (2011).
[CrossRef]

Choi, C. J.

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
[CrossRef]

Choi, H. J.

Chopra, K. L.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics Res. Appl. 12, 69–92 (2004).
[CrossRef]

Ciach, R.

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
[CrossRef]

Cocoyer, C.

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

Cody, G. D.

R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45, 19–29 (1977).
[CrossRef]

Coppe, J. P.

J. P. Coppe, Z. Xu, Y. Chen, and G. L. Liu, “Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules,” Nanotechnology 22, 245710 (2011).
[CrossRef]

Crouch, C. H.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

J. E. Carey, C. H. Crouch, R. Younkin, E. Mazur, M. Sheehy, and C. Friend, “Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon,” in Proceedings of the 14th International IVMC, C. E. Hunt, A. G. Chakhovskoi, N. N. Chubun, and M. Hajra, eds. (IVMC, 2001), pp. 75–76.

Cui, Y.

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng., R 70, 330–340 (2010).
[CrossRef]

Cunningham, B. T.

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
[CrossRef]

Dhungel, S. K.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
[CrossRef]

Dominguez-Caballero, J.

Dutta, V.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics Res. Appl. 12, 69–92 (2004).
[CrossRef]

Ekins-Daukes, N.

M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energ. 79, 78–85 (2005).
[CrossRef]

Escoubas, L.

Fan, S.

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng., R 70, 330–340 (2010).
[CrossRef]

Finlay, R. J.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[CrossRef]

Fiorini-Debuisschert, C.

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

Flory, F.

Friend, C.

J. E. Carey, C. H. Crouch, R. Younkin, E. Mazur, M. Sheehy, and C. Friend, “Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon,” in Proceedings of the 14th International IVMC, C. E. Hunt, A. G. Chakhovskoi, N. N. Chubun, and M. Hajra, eds. (IVMC, 2001), pp. 75–76.

Gangopadhyay, U.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
[CrossRef]

Gartia, M. R.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011).
[CrossRef]

M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, “Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate,” Nanotechnology 22, 365203 (2011).
[CrossRef]

Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett. 98, 241904 (2011).
[CrossRef]

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
[CrossRef]

Geffroy, B.

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

Genin, F. Y.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

Green, M. A.

M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).

Hamakawa, Y.

T. Minemoto, T. Mizuta, H. Takakura, and Y. Hamakawa, “Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells,” Sol. Energy Mater. Sol. Cells 91, 191–194 (2007).
[CrossRef]

Her, T. H.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[CrossRef]

Hezel, R.

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
[CrossRef]

Hong, Z. R.

L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

Hsiao, A.

M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, “Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate,” Nanotechnology 22, 365203 (2011).
[CrossRef]

Hsu, C. H.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Hsu, Y. K.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Huang, Y. F.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Jen, Y. J.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Jiang, J.

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
[CrossRef]

Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett. 98, 241904 (2011).
[CrossRef]

Kim, K.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
[CrossRef]

Koynov, S.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Lee, C. S.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Li, C.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85, 1574–1578 (2011).
[CrossRef]

Li, G.

L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

Lian, Y.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011).
[CrossRef]

Lipinski, M.

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
[CrossRef]

Liu, B.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85, 1574–1578 (2011).
[CrossRef]

Liu, G. L.

Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett. 98, 241904 (2011).
[CrossRef]

J. P. Coppe, Z. Xu, Y. Chen, and G. L. Liu, “Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules,” Nanotechnology 22, 245710 (2011).
[CrossRef]

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
[CrossRef]

M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, “Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate,” Nanotechnology 22, 365203 (2011).
[CrossRef]

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011).
[CrossRef]

Liu, J.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85, 1574–1578 (2011).
[CrossRef]

Liu, T. A.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Lo, H. C.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Mangalaraj, D.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
[CrossRef]

Mazur, E.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[CrossRef]

J. E. Carey, C. H. Crouch, R. Younkin, E. Mazur, M. Sheehy, and C. Friend, “Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon,” in Proceedings of the 14th International IVMC, C. E. Hunt, A. G. Chakhovskoi, N. N. Chubun, and M. Hajra, eds. (IVMC, 2001), pp. 75–76.

Meier, D. L.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Minemoto, T.

T. Minemoto, T. Mizuta, H. Takakura, and Y. Hamakawa, “Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells,” Sol. Energy Mater. Sol. Cells 91, 191–194 (2007).
[CrossRef]

Mizuta, T.

T. Minemoto, T. Mizuta, H. Takakura, and Y. Hamakawa, “Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells,” Sol. Energy Mater. Sol. Cells 91, 191–194 (2007).
[CrossRef]

Mylyanych, A.

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
[CrossRef]

Nagel, H.

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
[CrossRef]

Page, M. R.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Pan, C. L.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Panek, P.

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
[CrossRef]

Parm, I. O.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
[CrossRef]

Paulson, P. D.

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics Res. Appl. 12, 69–92 (2004).
[CrossRef]

Peng, C. Y.

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Queisser, H.

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519(1961).
[CrossRef]

Raimond, P.

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

Rocha, L.

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

Sentein, C.

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

Sheehy, M.

J. E. Carey, C. H. Crouch, R. Younkin, E. Mazur, M. Sheehy, and C. Friend, “Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon,” in Proceedings of the 14th International IVMC, C. E. Hunt, A. G. Chakhovskoi, N. N. Chubun, and M. Hajra, eds. (IVMC, 2001), pp. 75–76.

Shen, M.

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

Shen, Z.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85, 1574–1578 (2011).
[CrossRef]

Shockley, W.

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519(1961).
[CrossRef]

Sicot, L.

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

Simon, J.

Sivaguru, M.

M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, “Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate,” Nanotechnology 22, 365203 (2011).
[CrossRef]

Solanki, C. S.

C. S. Solanki, Solar Photovoltaics: Fundamentals Technologies and Applications (PHI Learning, 2009).

Sopori, B.

B. Sopori, “Silicon nitride processing for control of optical and electronic properties of silicon solar cells,” J. Electron. Mater. 32, 1034–1042 (2003).
[CrossRef]

Stephens, R. B.

R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45, 19–29 (1977).
[CrossRef]

Stradins, P.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Streetman, B. G.

B. G. Streetman and S. K. Banerjee, Solid State Electronic Device (PHI Learning Private Limited, 2009).

Stutzmann, M.

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Takakura, H.

T. Minemoto, T. Mizuta, H. Takakura, and Y. Hamakawa, “Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells,” Sol. Energy Mater. Sol. Cells 91, 191–194 (2007).
[CrossRef]

Takamoto, T.

M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energ. 79, 78–85 (2005).
[CrossRef]

Torchio, P.

Vaufrey, D.

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

Whitlock, D.

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011).
[CrossRef]

Wu, C.

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[CrossRef]

Xia, Y.

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85, 1574–1578 (2011).
[CrossRef]

Xu, Z.

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
[CrossRef]

J. P. Coppe, Z. Xu, Y. Chen, and G. L. Liu, “Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules,” Nanotechnology 22, 245710 (2011).
[CrossRef]

Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett. 98, 241904 (2011).
[CrossRef]

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energ. 79, 78–85 (2005).
[CrossRef]

M. Yamaguchi, “III–V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75, 261–269 (2003).
[CrossRef]

Yang, Y.

L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

Yerokhov, V. Y.

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
[CrossRef]

Yi, J.

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells 95, 2–6 (2011).
[CrossRef]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
[CrossRef]

Yoo, J.

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells 95, 2–6 (2011).
[CrossRef]

Yoo, J. S.

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
[CrossRef]

Yost, V. E.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Younkin, R.

J. E. Carey, C. H. Crouch, R. Younkin, E. Mazur, M. Sheehy, and C. Friend, “Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon,” in Proceedings of the 14th International IVMC, C. E. Hunt, A. G. Chakhovskoi, N. N. Chubun, and M. Hajra, eds. (IVMC, 2001), pp. 75–76.

Yu, G.

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells 95, 2–6 (2011).
[CrossRef]

Yu, Z.

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng., R 70, 330–340 (2010).
[CrossRef]

Yuan, H. C.

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

Zhu, J.

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng., R 70, 330–340 (2010).
[CrossRef]

ACS Nano (1)

Y. Chen, Z. Xu, M. R. Gartia, D. Whitlock, Y. Lian, and G. L. Liu, “Ultrahigh throughput silicon nanomanufacturing by simultaneous reactive ion synthesis and etching,” ACS Nano 5, 8002–8012 (2011).
[CrossRef]

Adv. Mater. (1)

L. M. Chen, Z. R. Hong, G. Li, and Y. Yang, “Recent progress in polymer solar cells: manipulation of polymer: fullerene morphology and the formation of efficient inverted polymer solar cells,” Adv. Mater. 21, 1434–1449 (2009).
[CrossRef]

Appl. Phys. A (2)

T. H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[CrossRef]

C. H. Crouch, J. E. Carey, M. Shen, E. Mazur, and F. Y. Genin, “Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation,” Appl. Phys. A 79, 1635–1641 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

S. Koynov, M. S. Brandt, and M. Stutzmann, “Black nonreflecting silicon surfaces for solar cells,” Appl. Phys. Lett. 88, 203107 (2006).
[CrossRef]

Z. Xu, Y. Chen, M. R. Gartia, J. Jiang, and G. L. Liu, “Surface plasmon enhanced broadband spectrophotometry on black silver substrates,” Appl. Phys. Lett. 98, 241904 (2011).
[CrossRef]

H. C. Yuan, V. E. Yost, M. R. Page, P. Stradins, D. L. Meier, and H. M. Branz, “Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules,” Appl. Phys. Lett. 95, 123501 (2009).
[CrossRef]

J. Appl. Phys. (1)

W. Shockley and H. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519(1961).
[CrossRef]

J. Electron. Mater. (1)

B. Sopori, “Silicon nitride processing for control of optical and electronic properties of silicon solar cells,” J. Electron. Mater. 32, 1034–1042 (2003).
[CrossRef]

J. Raman Spectrosc. (1)

Z. Xu, M. R. Gartia, C. J. Choi, J. Jiang, Y. Chen, B. T. Cunningham, and G. L. Liu, “Quick detection of contaminants leaching from polypropylene centrifuge tubes with surface-enhanced Raman spectroscopy and ultraviolet absorption spectroscopy,” J. Raman Spectrosc. 42, 1939–1944 (2011).
[CrossRef]

Mater. Sci. Eng., R (1)

J. Zhu, Z. Yu, S. Fan, and Y. Cui, “Nanostructured photon management for high performance solar cells,” Mater. Sci. Eng., R 70, 330–340 (2010).
[CrossRef]

Nanotechnology (2)

M. R. Gartia, A. Hsiao, M. Sivaguru, Y. Chen, and G. L. Liu, “Enhanced 3D fluorescence live cell imaging on nanoplasmonic substrate,” Nanotechnology 22, 365203 (2011).
[CrossRef]

J. P. Coppe, Z. Xu, Y. Chen, and G. L. Liu, “Metallic nanocone array photonic substrate for high-uniformity surface deposition and optical detection of small molecules,” Nanotechnology 22, 245710 (2011).
[CrossRef]

Nat. Nanotechnol. (1)

Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2, 770–774 (2007).
[CrossRef]

Opt. Lett. (2)

Prog. Photovoltaics Res. Appl. (1)

K. L. Chopra, P. D. Paulson, and V. Dutta, “Thin-film solar cells: an overview,” Prog. Photovoltaics Res. Appl. 12, 69–92 (2004).
[CrossRef]

Sol. Energ. (1)

M. Yamaguchi, T. Takamoto, K. Araki, and N. Ekins-Daukes, “Multi-junction III–V solar cells: current status and future potential,” Sol. Energ. 79, 78–85 (2005).
[CrossRef]

Sol. Energy (1)

Y. Xia, B. Liu, J. Liu, Z. Shen, and C. Li, “A novel method to produce black silicon for solar cells,” Sol. Energy 85, 1574–1578 (2011).
[CrossRef]

Sol. Energy Mater. Sol. Cells (5)

V. Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, and P. Panek, “Cost-effective methods of texturing for silicon solar cells,” Sol. Energy Mater. Sol. Cells 72, 291–298 (2002).
[CrossRef]

M. Yamaguchi, “III–V compound multi-junction solar cells: present and future,” Sol. Energy Mater. Sol. Cells 75, 261–269 (2003).
[CrossRef]

T. Minemoto, T. Mizuta, H. Takakura, and Y. Hamakawa, “Antireflective coating fabricated by chemical deposition of ZnO for spherical Si solar cells,” Sol. Energy Mater. Sol. Cells 91, 191–194 (2007).
[CrossRef]

J. Yoo, G. Yu, and J. Yi, “Large-area multicrystalline silicon solar cell fabrication using reactive ion etching (RIE),” Sol. Energy Mater. Sol. Cells 95, 2–6 (2011).
[CrossRef]

J. S. Yoo, I. O. Parm, U. Gangopadhyay, K. Kim, S. K. Dhungel, D. Mangalaraj, and J. Yi, “Black silicon layer formation for application in solar cells,” Sol. Energy Mater. Sol. Cells 90, 3085–3093 (2006).
[CrossRef]

Thin Solid Films (2)

C. Cocoyer, L. Rocha, C. Fiorini-Debuisschert, L. Sicot, D. Vaufrey, C. Sentein, B. Geffroy, and P. Raimond, “Implementation of a submicrometer patterning technique in azopolymer films towards optimization of photovoltaic solar cells efficiency,” Thin Solid Films 511–512, 517–522 (2006).
[CrossRef]

R. B. Stephens and G. D. Cody, “Optical reflectance and transmission of a textured surface,” Thin Solid Films 45, 19–29 (1977).
[CrossRef]

Other (5)

ASTM International, Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables (ASTM International, 2006).

B. G. Streetman and S. K. Banerjee, Solid State Electronic Device (PHI Learning Private Limited, 2009).

J. E. Carey, C. H. Crouch, R. Younkin, E. Mazur, M. Sheehy, and C. Friend, “Fabrication of micrometer-sized conical field emitters using femtosecond laser-assisted etching of silicon,” in Proceedings of the 14th International IVMC, C. E. Hunt, A. G. Chakhovskoi, N. N. Chubun, and M. Hajra, eds. (IVMC, 2001), pp. 75–76.

C. S. Solanki, Solar Photovoltaics: Fundamentals Technologies and Applications (PHI Learning, 2009).

M. A. Green, Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) SPERISE fabrication process of nanotexturized black silicon; (b) SEM image of black silicon surface before the removal of synthesized oxybromide nanoparticles; (c) SEM image of black silicon surface after the removal of oxybromide nanoparticles.

Fig. 2.
Fig. 2.

(a) Untreated silicon 3 in. (7.6 cm) 100 wafer (right) and Si wafer treated to be black silicon with the SPERISE method (left); (b) Untreated c-Si 2 in. (5.08 cm) solar cell (right) and nanotexturized c-Si solar cell with much darker and more diffusive surface (left); (c) Diffusive reflection spectra of smooth Si wafer (blue), untreated c-Si solar cell (red), and nanotexturized c-Si solar cell (black); (d) Cross-section SEM image of black silicon; (e) Schematic to show the effective refractive index of nanopillar array on black silicon.

Fig. 3.
Fig. 3.

(a) SEM image of the surface of untreated c-Si solar cell; (b) Zoomed-in SEM image of the region on 3(a) indicated by the red square; (c) SEM image of the surface of nanotexturized c-Si solar cell; (d) Zoomed-in SEM image of the region on 3(c) indicated by the red square.

Fig. 4.
Fig. 4.

(a) I-V characteristics of commercial solar cell before (red curve) and after (black curve) nanotexturization. The data were measured under the illumination of AM 1.5 with the power density of 100mW/cm2 and at the temperature of 25  °C; (b) EQE spectra of commercial solar cell before (red curve) and after (black curve) SPERISE nanotexturization treatment.

Tables (1)

Tables Icon

Table 1. Comparison of the Parameters of c-Si Solar Cell Before and After the SPERISE Nanotexturization Treatmenta

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

3001100R(λ)N(λ)dλ3001100N(λ)dλ

Metrics