Abstract

An optimized 3D digital image correlation (3D-DIC) system using active optical imaging is developed for accurate shape and 3D deformation measurements in nonlaboratory conditions or extreme high-temperature environments. In contrast to a conventional 3D-DIC system using white or natural light illumination, the proposed active imaging 3D-DIC system is based on a combination of monochromatic lighting and bandpass filter imaging. Because the bandpass filter attached before the imaging lenses allows only the actively illuminated monochromatic light to pass through and blocks all light outside of its bandpass range, the active imaging 3D-DIC system is therefore insensitive to serious variations in ambient light in nonlaboratory environments and to the thermal radiation of hot objects in extreme high-temperature environments. Two challenging experiments that cannot be performed by a conventional 3D-DIC system were carried out to verify the robustness and accuracy of the developed active imaging 3D-DIC system. Because a much wider application range can be achieved with relatively simple and easy-to-implement improvements, the proposed active imaging 3D-DIC system is highly recommended for practical use instead of the conventional 3D-DIC system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Rastogi, Photomechanics (Springer Verlag, 2000).
  2. M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).
  3. B. Pan, K.-M. Qian, H.-M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
    [CrossRef]
  4. B. Pan, “Recent progress in digital image correlation,” Exp. Mech. 51, 1223–1235 (2011).
    [CrossRef]
  5. H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
    [CrossRef]
  6. B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
    [CrossRef]
  7. H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
    [CrossRef]
  8. B. Pan, H.-M. Xie, and Z.-Y. Wang, “Equivalence of digital image correlation criteria for pattern matching,” Appl. Opt. 49, 5501–5509 (2010).
    [CrossRef]
  9. S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
    [CrossRef]
  10. S. P. Ma, J. Z. Pang, and Q. W. Ma, “The systematic error in digital image correlation induced by self-heating of a digital camera,” Meas. Sci. Technol. 23, 025403 (2012).
    [CrossRef]
  11. B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49, 841–847 (2011).
    [CrossRef]
  12. M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
    [CrossRef]
  13. V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
    [CrossRef]
  14. S. Yoneyama, A. Kitagawa, S. Iwata, K. Tani, and H. Kikuta, “Bridge deflection measurement using digital image correlation,” Exp. Tech. 31, 34–40 (2007).
    [CrossRef]
  15. B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200 °C,” Meas. Sci. Technol. 22, 015701 (2011).
    [CrossRef]
  16. B. Pan, D. F. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
    [CrossRef]
  17. B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech. 39, 217–226 (1999).
    [CrossRef]
  18. B. Pan, D. F. Wu, and Z. Y. Wang, “Internal displacement and strain measurement using digital volume correlation: a least squares framework,” Meas. Sci. Technol. 23, 045002 (2012).
    [CrossRef]
  19. P. F. Luo, Y. J. Chao, M. A. Sutton, and W. H. Peters, “Accurate measurement of three-dimensional displacement in deformable bodies using computer vision,” Exp. Mech. 33, 123–132 (1993).
    [CrossRef]
  20. M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
    [CrossRef]
  21. D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736–742 (2002).
    [CrossRef]
  22. Z. Z. Tang, J. Liang, Z. Z. Xiao, C. Guo, and H. Hu, “Three-dimensional digital image correlation system for deformation measurement in experimental mechanics,” Opt. Eng. 49, 103601 (2010).
    [CrossRef]
  23. “Correlated Solutions,” http://www.correlatedsolutions.com .
  24. “GOM Optical Measuring Techniques,” http://www.gom.com .
  25. J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64–70 (1996).
    [CrossRef]
  26. B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain Anal. Eng. Des. 44, 263–271 (2009).
    [CrossRef]
  27. B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).
    [CrossRef]
  28. B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt. 48, 1535–1542(2009).
    [CrossRef]
  29. B. Pan, H.-M. Xie, Z.-Y. Wang, K.-M. Qian, and Z.-Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048(2008).
    [CrossRef]
  30. Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178 (2009).
    [CrossRef]
  31. B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).
    [CrossRef]
  32. P. F. Luo and J. N. Chen, “Measurement of curved-surface deformation in cylindrical coordinates,” Exp. Mech. 40, 345–350 (2000).
    [CrossRef]
  33. China Aeronautical Materials Handbook Redaction Committee, China Aeronautical Materials Handbook (Standards Press of China, 2002).
  34. B. Pan, H. M. Xie, T. Hua, and A. Asundi, “Measurement of coefficient of thermal expansion of films using digital image correlation method,” Polym. Test. 28, 75–83 (2009).
    [CrossRef]

2012 (3)

S. P. Ma, J. Z. Pang, and Q. W. Ma, “The systematic error in digital image correlation induced by self-heating of a digital camera,” Meas. Sci. Technol. 23, 025403 (2012).
[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

B. Pan, D. F. Wu, and Z. Y. Wang, “Internal displacement and strain measurement using digital volume correlation: a least squares framework,” Meas. Sci. Technol. 23, 045002 (2012).
[CrossRef]

2011 (3)

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200 °C,” Meas. Sci. Technol. 22, 015701 (2011).
[CrossRef]

B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49, 841–847 (2011).
[CrossRef]

B. Pan, “Recent progress in digital image correlation,” Exp. Mech. 51, 1223–1235 (2011).
[CrossRef]

2010 (4)

B. Pan, H.-M. Xie, and Z.-Y. Wang, “Equivalence of digital image correlation criteria for pattern matching,” Appl. Opt. 49, 5501–5509 (2010).
[CrossRef]

Z. Z. Tang, J. Liang, Z. Z. Xiao, C. Guo, and H. Hu, “Three-dimensional digital image correlation system for deformation measurement in experimental mechanics,” Opt. Eng. 49, 103601 (2010).
[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).
[CrossRef]

B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).
[CrossRef]

2009 (5)

B. Pan, H. M. Xie, T. Hua, and A. Asundi, “Measurement of coefficient of thermal expansion of films using digital image correlation method,” Polym. Test. 28, 75–83 (2009).
[CrossRef]

B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt. 48, 1535–1542(2009).
[CrossRef]

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain Anal. Eng. Des. 44, 263–271 (2009).
[CrossRef]

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178 (2009).
[CrossRef]

B. Pan, K.-M. Qian, H.-M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

2008 (2)

B. Pan, H.-M. Xie, Z.-Y. Wang, K.-M. Qian, and Z.-Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048(2008).
[CrossRef]

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

2007 (2)

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

S. Yoneyama, A. Kitagawa, S. Iwata, K. Tani, and H. Kikuta, “Bridge deflection measurement using digital image correlation,” Exp. Tech. 31, 34–40 (2007).
[CrossRef]

2006 (3)

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

2002 (1)

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736–742 (2002).
[CrossRef]

2000 (2)

P. F. Luo and J. N. Chen, “Measurement of curved-surface deformation in cylindrical coordinates,” Exp. Mech. 40, 345–350 (2000).
[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

1999 (1)

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech. 39, 217–226 (1999).
[CrossRef]

1996 (1)

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

1993 (1)

P. F. Luo, Y. J. Chao, M. A. Sutton, and W. H. Peters, “Accurate measurement of three-dimensional displacement in deformable bodies using computer vision,” Exp. Mech. 33, 123–132 (1993).
[CrossRef]

1989 (1)

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Asundi, A.

B. Pan, K.-M. Qian, H.-M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

B. Pan, H. M. Xie, T. Hua, and A. Asundi, “Measurement of coefficient of thermal expansion of films using digital image correlation method,” Polym. Test. 28, 75–83 (2009).
[CrossRef]

Bay, B. K.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech. 39, 217–226 (1999).
[CrossRef]

Braasch, J. R.

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

Bruch, H. A.

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178 (2009).
[CrossRef]

Bruck, H. A.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Chao, Y. J.

P. F. Luo, Y. J. Chao, M. A. Sutton, and W. H. Peters, “Accurate measurement of three-dimensional displacement in deformable bodies using computer vision,” Exp. Mech. 33, 123–132 (1993).
[CrossRef]

Chen, J. N.

P. F. Luo and J. N. Chen, “Measurement of curved-surface deformation in cylindrical coordinates,” Exp. Mech. 40, 345–350 (2000).
[CrossRef]

Cornille, N.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

Dai, F.-L.

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Fyhrie, D. P.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech. 39, 217–226 (1999).
[CrossRef]

Garcia, D.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736–742 (2002).
[CrossRef]

Grant, B. M. B.

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain Anal. Eng. Des. 44, 263–271 (2009).
[CrossRef]

Guo, C.

Z. Z. Tang, J. Liang, Z. Z. Xiao, C. Guo, and H. Hu, “Three-dimensional digital image correlation system for deformation measurement in experimental mechanics,” Opt. Eng. 49, 103601 (2010).
[CrossRef]

Hu, H.

Z. Z. Tang, J. Liang, Z. Z. Xiao, C. Guo, and H. Hu, “Three-dimensional digital image correlation system for deformation measurement in experimental mechanics,” Opt. Eng. 49, 103601 (2010).
[CrossRef]

Hua, T.

B. Pan, H. M. Xie, T. Hua, and A. Asundi, “Measurement of coefficient of thermal expansion of films using digital image correlation method,” Polym. Test. 28, 75–83 (2009).
[CrossRef]

Iwata, S.

S. Yoneyama, A. Kitagawa, S. Iwata, K. Tani, and H. Kikuta, “Bridge deflection measurement using digital image correlation,” Exp. Tech. 31, 34–40 (2007).
[CrossRef]

Kikuta, H.

S. Yoneyama, A. Kitagawa, S. Iwata, K. Tani, and H. Kikuta, “Bridge deflection measurement using digital image correlation,” Exp. Tech. 31, 34–40 (2007).
[CrossRef]

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Kitagawa, A.

S. Yoneyama, A. Kitagawa, S. Iwata, K. Tani, and H. Kikuta, “Bridge deflection measurement using digital image correlation,” Exp. Tech. 31, 34–40 (2007).
[CrossRef]

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Kitamura, K.

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Li, K.

B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49, 841–847 (2011).
[CrossRef]

Li, N.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

Li, X.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

Liang, J.

Z. Z. Tang, J. Liang, Z. Z. Xiao, C. Guo, and H. Hu, “Three-dimensional digital image correlation system for deformation measurement in experimental mechanics,” Opt. Eng. 49, 103601 (2010).
[CrossRef]

Liu, J.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Lu, Z. X.

B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).
[CrossRef]

Luo, P. F.

P. F. Luo and J. N. Chen, “Measurement of curved-surface deformation in cylindrical coordinates,” Exp. Mech. 40, 345–350 (2000).
[CrossRef]

P. F. Luo, Y. J. Chao, M. A. Sutton, and W. H. Peters, “Accurate measurement of three-dimensional displacement in deformable bodies using computer vision,” Exp. Mech. 33, 123–132 (1993).
[CrossRef]

Lyons, J. S.

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

Ma, Q. W.

S. P. Ma, J. Z. Pang, and Q. W. Ma, “The systematic error in digital image correlation induced by self-heating of a digital camera,” Meas. Sci. Technol. 23, 025403 (2012).
[CrossRef]

Ma, S. P.

S. P. Ma, J. Z. Pang, and Q. W. Ma, “The systematic error in digital image correlation induced by self-heating of a digital camera,” Meas. Sci. Technol. 23, 025403 (2012).
[CrossRef]

McNeil, S. R.

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

McNeill, S. R.

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

Orteu, J. J.

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736–742 (2002).
[CrossRef]

M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).

Pan, B.

B. Pan, D. F. Wu, and Z. Y. Wang, “Internal displacement and strain measurement using digital volume correlation: a least squares framework,” Meas. Sci. Technol. 23, 045002 (2012).
[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200 °C,” Meas. Sci. Technol. 22, 015701 (2011).
[CrossRef]

B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49, 841–847 (2011).
[CrossRef]

B. Pan, “Recent progress in digital image correlation,” Exp. Mech. 51, 1223–1235 (2011).
[CrossRef]

B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).
[CrossRef]

B. Pan, H.-M. Xie, and Z.-Y. Wang, “Equivalence of digital image correlation criteria for pattern matching,” Appl. Opt. 49, 5501–5509 (2010).
[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).
[CrossRef]

B. Pan, K.-M. Qian, H.-M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt. 48, 1535–1542(2009).
[CrossRef]

B. Pan, H. M. Xie, T. Hua, and A. Asundi, “Measurement of coefficient of thermal expansion of films using digital image correlation method,” Polym. Test. 28, 75–83 (2009).
[CrossRef]

B. Pan, H.-M. Xie, Z.-Y. Wang, K.-M. Qian, and Z.-Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048(2008).
[CrossRef]

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Pang, J. Z.

S. P. Ma, J. Z. Pang, and Q. W. Ma, “The systematic error in digital image correlation induced by self-heating of a digital camera,” Meas. Sci. Technol. 23, 025403 (2012).
[CrossRef]

Penazzi, L.

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736–742 (2002).
[CrossRef]

Peters, W. H.

P. F. Luo, Y. J. Chao, M. A. Sutton, and W. H. Peters, “Accurate measurement of three-dimensional displacement in deformable bodies using computer vision,” Exp. Mech. 33, 123–132 (1993).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

Preuss, M.

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain Anal. Eng. Des. 44, 263–271 (2009).
[CrossRef]

Qian, K.-M.

B. Pan, K.-M. Qian, H.-M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

B. Pan, H.-M. Xie, Z.-Y. Wang, K.-M. Qian, and Z.-Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048(2008).
[CrossRef]

Rastogi, P. K.

P. K. Rastogi, Photomechanics (Springer Verlag, 2000).

Saad, M.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech. 39, 217–226 (1999).
[CrossRef]

Schreier, H. W.

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178 (2009).
[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).

Schreier, W. H.

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

Schreir, H. W.

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

Smith, T. S.

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech. 39, 217–226 (1999).
[CrossRef]

Stone, H. J.

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain Anal. Eng. Des. 44, 263–271 (2009).
[CrossRef]

Sutton, M. A.

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178 (2009).
[CrossRef]

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

P. F. Luo, Y. J. Chao, M. A. Sutton, and W. H. Peters, “Accurate measurement of three-dimensional displacement in deformable bodies using computer vision,” Exp. Mech. 33, 123–132 (1993).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).

Tang, Z. Z.

Z. Z. Tang, J. Liang, Z. Z. Xiao, C. Guo, and H. Hu, “Three-dimensional digital image correlation system for deformation measurement in experimental mechanics,” Opt. Eng. 49, 103601 (2010).
[CrossRef]

Tani, K.

S. Yoneyama, A. Kitagawa, S. Iwata, K. Tani, and H. Kikuta, “Bridge deflection measurement using digital image correlation,” Exp. Tech. 31, 34–40 (2007).
[CrossRef]

Tiwari, V.

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

Wang, Y. Q.

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178 (2009).
[CrossRef]

Wang, Z. Y.

B. Pan, D. F. Wu, and Z. Y. Wang, “Internal displacement and strain measurement using digital volume correlation: a least squares framework,” Meas. Sci. Technol. 23, 045002 (2012).
[CrossRef]

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200 °C,” Meas. Sci. Technol. 22, 015701 (2011).
[CrossRef]

Wang, Z.-Y.

Withers, P. J.

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain Anal. Eng. Des. 44, 263–271 (2009).
[CrossRef]

Wu, D. F.

B. Pan, D. F. Wu, and Z. Y. Wang, “Internal displacement and strain measurement using digital volume correlation: a least squares framework,” Meas. Sci. Technol. 23, 045002 (2012).
[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200 °C,” Meas. Sci. Technol. 22, 015701 (2011).
[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).
[CrossRef]

Xia, Y.

B. Pan, D. F. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200 °C,” Meas. Sci. Technol. 22, 015701 (2011).
[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).
[CrossRef]

Xiao, Z. Z.

Z. Z. Tang, J. Liang, Z. Z. Xiao, C. Guo, and H. Hu, “Three-dimensional digital image correlation system for deformation measurement in experimental mechanics,” Opt. Eng. 49, 103601 (2010).
[CrossRef]

Xie, H. M.

B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).
[CrossRef]

B. Pan, H. M. Xie, T. Hua, and A. Asundi, “Measurement of coefficient of thermal expansion of films using digital image correlation method,” Polym. Test. 28, 75–83 (2009).
[CrossRef]

Xie, H.-M.

B. Pan, H.-M. Xie, and Z.-Y. Wang, “Equivalence of digital image correlation criteria for pattern matching,” Appl. Opt. 49, 5501–5509 (2010).
[CrossRef]

B. Pan, K.-M. Qian, H.-M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

B. Pan, H.-M. Xie, Z.-Y. Wang, K.-M. Qian, and Z.-Y. Wang, “Study of subset size selection in digital image correlation for speckle patterns,” Opt. Express 16, 7037–7048(2008).
[CrossRef]

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Xu, B.-Q.

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Yan, J. H.

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

Yoneyama, S.

S. Yoneyama, A. Kitagawa, S. Iwata, K. Tani, and H. Kikuta, “Bridge deflection measurement using digital image correlation,” Exp. Tech. 31, 34–40 (2007).
[CrossRef]

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Appl. Opt. (2)

Exp. Mech. (7)

J. S. Lyons, J. Liu, and M. A. Sutton, “High-temperature deformation measurement using digital image correlation,” Exp. Mech. 36, 64–70 (1996).
[CrossRef]

P. F. Luo and J. N. Chen, “Measurement of curved-surface deformation in cylindrical coordinates,” Exp. Mech. 40, 345–350 (2000).
[CrossRef]

B. K. Bay, T. S. Smith, D. P. Fyhrie, and M. Saad, “Digital volume correlation: three-dimensional strain mapping using X-ray tomography,” Exp. Mech. 39, 217–226 (1999).
[CrossRef]

P. F. Luo, Y. J. Chao, M. A. Sutton, and W. H. Peters, “Accurate measurement of three-dimensional displacement in deformable bodies using computer vision,” Exp. Mech. 33, 123–132 (1993).
[CrossRef]

B. Pan, “Recent progress in digital image correlation,” Exp. Mech. 51, 1223–1235 (2011).
[CrossRef]

H. A. Bruck, S. R. McNeil, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Exp. Mech. 29, 261–267 (1989).
[CrossRef]

V. Tiwari, M. A. Sutton, and S. R. McNeill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47, 561–579 (2007).
[CrossRef]

Exp. Tech. (1)

S. Yoneyama, A. Kitagawa, S. Iwata, K. Tani, and H. Kikuta, “Bridge deflection measurement using digital image correlation,” Exp. Tech. 31, 34–40 (2007).
[CrossRef]

J. Mater. Process. Technol. (1)

D. Garcia, J. J. Orteu, and L. Penazzi, “A combined temporal tracking and stereo-correlation technique for accurate measurement of 3D displacements: application to sheet metal forming,” J. Mater. Process. Technol. 125, 736–742 (2002).
[CrossRef]

J. Strain Anal. Eng. Des. (1)

B. M. B. Grant, H. J. Stone, P. J. Withers, and M. Preuss, “High-temperature strain field measurement using digital image correlation,” J. Strain Anal. Eng. Des. 44, 263–271 (2009).
[CrossRef]

Meas. Sci. Technol. (6)

B. Pan, D. F. Wu, and Z. Y. Wang, “Internal displacement and strain measurement using digital volume correlation: a least squares framework,” Meas. Sci. Technol. 23, 045002 (2012).
[CrossRef]

B. Pan, D. F. Wu, Z. Y. Wang, and Y. Xia, “High-temperature digital image correlation for full-field deformation measurement at 1200 °C,” Meas. Sci. Technol. 22, 015701 (2011).
[CrossRef]

S. P. Ma, J. Z. Pang, and Q. W. Ma, “The systematic error in digital image correlation induced by self-heating of a digital camera,” Meas. Sci. Technol. 23, 025403 (2012).
[CrossRef]

B. Pan, K.-M. Qian, H.-M. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Meas. Sci. Technol. 20, 062001 (2009).
[CrossRef]

M. A. Sutton, N. Li, D. Garcia, N. Cornille, J. J. Orteu, S. R. McNeill, H. W. Schreir, and X. Li, “Metrology in a scanning electron microscope: theoretical developments and experimental validation,” Meas. Sci. Technol. 17, 2613–2622(2006).
[CrossRef]

B. Pan, H.-M. Xie, B.-Q. Xu, and F.-L. Dai, “Performance of sub-pixel registration algorithms in digital image correlation,” Meas. Sci. Technol. 17, 1615–1621 (2006).
[CrossRef]

Opt. Eng. (3)

H. W. Schreier, J. R. Braasch, and M. A. Sutton, “Systematic errors in digital image correlation caused by intensity interpolation,” Opt. Eng. 39, 2915–2921 (2000).
[CrossRef]

S. Yoneyama, H. Kikuta, A. Kitagawa, and K. Kitamura, “Lens distortion correction for digital image correlation by measuring rigid body displacement,” Opt. Eng. 45, 023602 (2006).
[CrossRef]

Z. Z. Tang, J. Liang, Z. Z. Xiao, C. Guo, and H. Hu, “Three-dimensional digital image correlation system for deformation measurement in experimental mechanics,” Opt. Eng. 49, 103601 (2010).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (1)

B. Pan, D. F. Wu, and Y. Xia, “An active imaging digital image correlation method for deformation measurement insensitive to ambient light,” Opt. Laser Technol. 44, 204–209 (2012).
[CrossRef]

Opt. Lasers Eng. (4)

B. Pan and K. Li, “A fast digital image correlation method for deformation measurement,” Opt. Lasers Eng. 49, 841–847 (2011).
[CrossRef]

B. Pan, D. F. Wu, and Y. Xia, “High-temperature field measurement by combing transient aerodynamic heating system and reliability-guided digital image correlation,” Opt. Lasers Eng. 48, 841–848 (2010).
[CrossRef]

B. Pan, Z. X. Lu, and H. M. Xie, “Mean intensity gradient: an effective global parameter for quality assessment of the speckle patterns used in digital image correlation,” Opt. Lasers Eng. 48, 469–477 (2010).
[CrossRef]

M. A. Sutton, J. H. Yan, V. Tiwari, W. H. Schreier, and J. J. Orteu, “The effect of out-of-plane motion on 2D and 3D digital image correlation measurements,” Opt. Lasers Eng. 46, 746–757 (2008).
[CrossRef]

Polym. Test. (1)

B. Pan, H. M. Xie, T. Hua, and A. Asundi, “Measurement of coefficient of thermal expansion of films using digital image correlation method,” Polym. Test. 28, 75–83 (2009).
[CrossRef]

Strain (1)

Y. Q. Wang, M. A. Sutton, H. A. Bruch, and H. W. Schreier, “Quantitative error assessment in pattern matching: effects of intensity pattern noise, interpolation, strain and image contrast on motion measurement,” Strain 45, 160–178 (2009).
[CrossRef]

Other (5)

China Aeronautical Materials Handbook Redaction Committee, China Aeronautical Materials Handbook (Standards Press of China, 2002).

“Correlated Solutions,” http://www.correlatedsolutions.com .

“GOM Optical Measuring Techniques,” http://www.gom.com .

P. K. Rastogi, Photomechanics (Springer Verlag, 2000).

M. A. Sutton, J. J. Orteu, and H. W. Schreier, Image Correlation for Shape, Motion and Deformation Measurements (Springer, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic drawing of principle of binocular stereovision used in a 3D-DIC system.

Fig. 2.
Fig. 2.

Subset-based 2D-DIC method is used to track the positions of each calculation point defined in left image 0 in the rest of the images.

Fig. 3.
Fig. 3.

(a) Photograph of the self-established active imaging 3D-DIC system; (b) quantum efficiency curve of the CCD camera; (c) transmission efficiency of the bandpass filter attached before the imaging lens.

Fig. 4.
Fig. 4.

Left and right images of a cylinder surface captured by a regular 3D-DIC system using an ordinary imaging lens under appropriate (top), intensified (middle), and insufficient (bottom) external white light illumination.

Fig. 5.
Fig. 5.

Left and right images of a cylinder surface captured by the proposed active imaging 3D-DIC system under moderate (top), intensified (middle), and insufficient (bottom) external white light illumination.

Fig. 6.
Fig. 6.

Intensity profiles of line AB on the cylinder surface captured by (a) the conventional 3D-DIC system and (b) the proposed active imaging 3D-DIC system under various illumination lighting conditions.

Fig. 7.
Fig. 7.

Reconstructed profile of the cylinder surface: (a) contour plot imposed onto the left image, (b) 3D view.

Fig. 8.
Fig. 8.

(a) In situ photograph of the experimental setup used for the high-temperature deformation measurement; (b) photograph of the specimen surface at 1200 °C captured by a common digital camera, (c)–(f) surface images captured by the left camera of the active imaging 3D-DIC system at temperatures of 20 °C, 500 °C, 1000 °C, and 1200 °C.

Fig. 9.
Fig. 9.

Thermal deformation of the chromium-nickel austenite stainless steel sample at 1200 °C measured by the established active imaging 3D-DIC system after removing in-plane rigid-body motion: (a) u-field displacement; (b) v-field displacement, and (c) w-field displacement (unit: mm).

Fig. 10.
Fig. 10.

Comparison of the thermal strains measured by the proposed active imaging 3D-DIC system and literature data measured by 2D-DIC.

Tables (1)

Tables Icon

Table 1. Average Intensity (Denoted by Iav) and Mean Intensity 1 Gradient (Denoted by Iav) of Each Speckle Pattern Recorded by the Left Camera of an Ordinary Optical Imaging System and the Proposed Active Imaging System

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

CZNSSD(p)=i=MMj=MM[f(xi,yj)fmi=MMj=MM[f(xi,yj)fm]2g(xi,yj)gmi=MMj=MM[g(xi,yj)gm]2]2,

Metrics