Abstract

A novel broadband LP01LP02 mode converter for dispersion compensation based on special dual-core fiber is theoretically investigated by using the coupled-mode theory. The simulated mode converter has 22nm bandwidth with a conversion efficiency of over 80%. Furthermore, this noncomplete conversion only introduces the insertion loss rather than multipath interference resulting from the residual LP01 mode. Finally, one optimal scheme for broadening the bandwidth of high-efficiency conversion has been proposed by longitudinally tapering the dual-core fiber. The simulation results show that the conversion bandwidth can be improved to 31nm by tapering with a scaling range of only 2%.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
    [CrossRef]
  2. L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-compensating fibers,” J. Lightwave Technol. 23, 3566–3579 (2005).
    [CrossRef]
  3. C. D. Poole, J. M. Wiesenfeld, A. R. McCormick, and K. T. Nelson, “Broadband dispersion compensation by using high-order spatial mode in a two-mode fiber,” Opt. Lett. 17, 985–987 (1992).
    [CrossRef]
  4. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation by using high order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
    [CrossRef]
  5. S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23, 3426–3443 (2005).
    [CrossRef]
  6. M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode based dispersion compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 5, 249–311 (2007).
    [CrossRef]
  7. K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
    [CrossRef]
  8. F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. Skinner, “Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre: spectral response,” Electron. Lett. 27, 682–684 (1991).
    [CrossRef]
  9. S. Ramachandran, Z. Wang, and M. Yan, “Bandwidth control of long-period grating-based mode converters in few-mode fibers,” Opt. Lett. 27, 698–700 (2002).
    [CrossRef]
  10. S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 221, 307–312 (2003).
    [CrossRef]
  11. G. Lin, X. Dong, and J. Su, “Design and analysis of the high-order mode dispersion compensating fiber,” Proc. SPIE 7986, 798618 (2010).
    [CrossRef]
  12. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267–1277 (1972).
    [CrossRef]
  13. A. M. Vengsarkar and K. L. Walker, “Article comprising a dispersion-compensating optical waveguide,” U.S. patent 5,448,674 (5September1995).
  14. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]

2010 (1)

G. Lin, X. Dong, and J. Su, “Design and analysis of the high-order mode dispersion compensating fiber,” Proc. SPIE 7986, 798618 (2010).
[CrossRef]

2007 (1)

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode based dispersion compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 5, 249–311 (2007).
[CrossRef]

2005 (2)

2003 (1)

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 221, 307–312 (2003).
[CrossRef]

2002 (1)

1994 (2)

A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation by using high order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

1992 (2)

1991 (1)

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. Skinner, “Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre: spectral response,” Electron. Lett. 27, 682–684 (1991).
[CrossRef]

1990 (1)

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[CrossRef]

1972 (1)

Antos, A. J.

A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
[CrossRef]

Bilodeau, F.

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. Skinner, “Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre: spectral response,” Electron. Lett. 27, 682–684 (1991).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[CrossRef]

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Choi, S.

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 221, 307–312 (2003).
[CrossRef]

Danziger, Y.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode based dispersion compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 5, 249–311 (2007).
[CrossRef]

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation by using high order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

Dong, X.

G. Lin, X. Dong, and J. Su, “Design and analysis of the high-order mode dispersion compensating fiber,” Proc. SPIE 7986, 798618 (2010).
[CrossRef]

Edvold, B.

Grüner-Nielsen, L.

Hill, K. O.

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. Skinner, “Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre: spectral response,” Electron. Lett. 27, 682–684 (1991).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[CrossRef]

Jakobsen, D.

Japha, Y.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode based dispersion compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 5, 249–311 (2007).
[CrossRef]

Johnson, D. C.

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. Skinner, “Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre: spectral response,” Electron. Lett. 27, 682–684 (1991).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[CrossRef]

Jorgensen, C.

Jorgensen, L. V.

Kristensen, P.

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

Lin, G.

G. Lin, X. Dong, and J. Su, “Design and analysis of the high-order mode dispersion compensating fiber,” Proc. SPIE 7986, 798618 (2010).
[CrossRef]

Malo, B.

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. Skinner, “Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre: spectral response,” Electron. Lett. 27, 682–684 (1991).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[CrossRef]

McCormick, A. R.

Menashe, D.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode based dispersion compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 5, 249–311 (2007).
[CrossRef]

Nelson, K. T.

Oh, K.

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 221, 307–312 (2003).
[CrossRef]

Pálsdóttir, B.

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation by using high order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, A. R. McCormick, and K. T. Nelson, “Broadband dispersion compensation by using high-order spatial mode in a two-mode fiber,” Opt. Lett. 17, 985–987 (1992).
[CrossRef]

Ramachandran, S.

Skinner, I.

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. Skinner, “Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre: spectral response,” Electron. Lett. 27, 682–684 (1991).
[CrossRef]

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[CrossRef]

Smith, D. K.

A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
[CrossRef]

Snyder, A. W.

Su, J.

G. Lin, X. Dong, and J. Su, “Design and analysis of the high-order mode dispersion compensating fiber,” Proc. SPIE 7986, 798618 (2010).
[CrossRef]

Tur, M.

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode based dispersion compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 5, 249–311 (2007).
[CrossRef]

Vengsarkar, A. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation by using high order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

A. M. Vengsarkar and K. L. Walker, “Article comprising a dispersion-compensating optical waveguide,” U.S. patent 5,448,674 (5September1995).

Vineberg, K. A.

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[CrossRef]

Walker, K. L.

A. M. Vengsarkar and K. L. Walker, “Article comprising a dispersion-compensating optical waveguide,” U.S. patent 5,448,674 (5September1995).

Wandel, M.

Wang, Z.

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation by using high order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, A. R. McCormick, and K. T. Nelson, “Broadband dispersion compensation by using high-order spatial mode in a two-mode fiber,” Opt. Lett. 17, 985–987 (1992).
[CrossRef]

Yan, M.

Electron. Lett. (2)

K. O. Hill, B. Malo, K. A. Vineberg, F. Bilodeau, D. C. Johnson, and I. Skinner, “Efficient mode conversion in telecommunication fibre using externally written gratings,” Electron. Lett. 26, 1270–1272 (1990).
[CrossRef]

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and I. Skinner, “Efficient, narrowband LP01 implies/implied by LP02 mode convertors fabricated in photosensitive fibre: spectral response,” Electron. Lett. 27, 682–684 (1991).
[CrossRef]

J. Lightwave Technol. (5)

A. J. Antos and D. K. Smith, “Design and characterization of dispersion compensating fiber based on the LP01 mode,” J. Lightwave Technol. 12, 1739–1745 (1994).
[CrossRef]

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation by using high order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
[CrossRef]

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

S. Ramachandran, “Dispersion-tailored few-mode fibers: a versatile platform for in-fiber photonic devices,” J. Lightwave Technol. 23, 3426–3443 (2005).
[CrossRef]

L. Grüner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Pálsdóttir, and D. Jakobsen, “Dispersion-compensating fibers,” J. Lightwave Technol. 23, 3566–3579 (2005).
[CrossRef]

J. Opt. Fiber. Commun. Rep. (1)

M. Tur, D. Menashe, Y. Japha, and Y. Danziger, “High-order mode based dispersion compensating modules using spatial mode conversion,” J. Opt. Fiber. Commun. Rep. 5, 249–311 (2007).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

S. Choi and K. Oh, “A new LP02 mode dispersion compensation scheme based on mode converter using hollow optical fiber,” Opt. Commun. 221, 307–312 (2003).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

G. Lin, X. Dong, and J. Su, “Design and analysis of the high-order mode dispersion compensating fiber,” Proc. SPIE 7986, 798618 (2010).
[CrossRef]

Other (1)

A. M. Vengsarkar and K. L. Walker, “Article comprising a dispersion-compensating optical waveguide,” U.S. patent 5,448,674 (5September1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

The schematic of transmission link cascaded with transmission fiber–dual-core-fiber-based mode converter–HOM-DCF.

Fig. 2.
Fig. 2.

Refractive index profile: (a) HOMF and (b) mode converter, where nCl is the refractive index of outer SiO2 cladding; ni (i=1, 2, 3) is the refractive index of each region; a, b, and c are the radii of each region; ρ is the radius of the SMF core; and D is the distance between two parallel cores’ center, respectively.

Fig. 3.
Fig. 3.

The mode effective indices: the LP01 mode on the SMF and the LP01 and LP02 modes on the HOMF, respectively.

Fig. 4.
Fig. 4.

Power variations versus dual-core fiber length of the LP01 mode on the SMF core and the LP01 and LP02 modes on the HOMF core. The power is initially confined in the SMF core. Four cases with d=0, 1, 2 and 3 μm, respectively, are shown.

Fig. 5.
Fig. 5.

Spectrum of the mode conversion efficiency by the dual-core-fiber-based mode converter (a) from the LP01 mode on the SMF core to the LP02 mode on the HOMF core, (b) from the LP02 mode on the HOMF core to the LP01 mode on the SMF.

Fig. 6.
Fig. 6.

The effect of the fiber scaling on the phase-matching wavelength: (a) α=0.99, (b) α=0.98.

Fig. 7.
Fig. 7.

Comparison of the mode conversion efficiency spectra for the mode converter before (dashed curve) and after (solid curve) tapering.

Tables (1)

Tables Icon

Table 1. Design Parameters of HOM-DCF

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{dA0(z)dz=iβ0A0(z)ik=1NC0kAk(z)dAk(z)dz=iβkAk(z)iCk0A0(z)k=1,2,,N.
Cij=14k0ε0μ0A(n2ni2)ψiψj*dA(i,j=0,k;ij).

Metrics