Abstract

Optical sorting was demonstrated by selective trapping of a set of microspheres (having specific size or composition) from a flowing mixture and guiding these in the desired direction by a moving array of optical traps. The approach exploits the fact that whereas the fluid drag force varies linearly with particle size, the optical gradient force has a more complex dependence on the particle size and also on its optical properties. Therefore, the ratio of these two forces is unique for different types of flowing particles. Selective trapping of a particular type of particles can thus be achieved by ensuring that the ratio between fluid drag and optical gradient force on these is below unity whereas for others it exceeds unity. Thereafter, the trapped particles can be sorted using a motion of the trapping sites towards the output. Because in this method the trapping force seen by the selected fraction of particles can be suitably higher than the fluid drag force, the particles can be captured and sorted from a fast fluid flow (about 150μm/s). Therefore, even when using a dilute particle suspension, where the colloidal trafficking issues are naturally minimized, due to high flow rate a good throughput (about 30particles/s) can be obtained. Experiments were performed to demonstrate sorting between silica spheres of different sizes (2, 3, and 5 μm) and between 3 μm size silica and polystyrene spheres.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, “Cellular and colloidal separation using optical forces,” in Methods in Cell Biology, M. Berns and K. Greulich, eds. (Elsevier, 2007), Vol. 82, pp. 467–495.
  2. L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
    [CrossRef]
  3. G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepulveda, and P. Zemánek, “Transverse particle dynamics in a Bessel beam,” Opt. Express 15, 13972–13987 (2007).
    [CrossRef]
  4. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
    [CrossRef]
  5. P. Jekl, T. Čižmer, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
    [CrossRef]
  6. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
    [CrossRef]
  7. A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31, 2054–2056 (2006).
    [CrossRef]
  8. A. Terray, J. D. Taylor, and S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106 (2009).
    [CrossRef]
  9. K. Ladavac, K. Kasza, and D. G. Grier, “Sorting microscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
    [CrossRef]
  10. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
    [CrossRef]
  11. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
    [CrossRef]
  12. Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
    [CrossRef]
  13. R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A 9, S134–S138 (2007).
    [CrossRef]
  14. K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation,” Phys. Rev. E 82, 051407 (2010).
    [CrossRef]
  15. M. P. MacDonald, S. Neale, L. Paterson, A. Riches, G. C. Spalding, and K. Dholakia, “Microfluidic optical sorting: particle selection in an optical lattice,” Proc. SPIE 5514, 1–14 (2004).
    [CrossRef]
  16. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff, 1973).
  17. K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
    [CrossRef]
  18. G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
    [CrossRef]
  19. Y. K. Nahmias and D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
    [CrossRef]
  20. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
    [CrossRef]
  21. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [CrossRef]
  22. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3835 (1991).
    [CrossRef]
  23. J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
    [CrossRef]
  24. A. L. Givan, Flow Cytometry: First Principles, 2nd ed.(Wiley-Liss, 2001), p. 27.

2010 (1)

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation,” Phys. Rev. E 82, 051407 (2010).
[CrossRef]

2009 (1)

A. Terray, J. D. Taylor, and S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106 (2009).
[CrossRef]

2008 (1)

P. Jekl, T. Čižmer, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

2007 (4)

G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepulveda, and P. Zemánek, “Transverse particle dynamics in a Bessel beam,” Opt. Express 15, 13972–13987 (2007).
[CrossRef]

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
[CrossRef]

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A 9, S134–S138 (2007).
[CrossRef]

2006 (3)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, “Tunable optical sorting and manipulation of nanoparticles via plasmon excitation,” Opt. Lett. 31, 2054–2056 (2006).
[CrossRef]

2005 (1)

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

2004 (2)

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting microscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

M. P. MacDonald, S. Neale, L. Paterson, A. Riches, G. C. Spalding, and K. Dholakia, “Microfluidic optical sorting: particle selection in an optical lattice,” Proc. SPIE 5514, 1–14 (2004).
[CrossRef]

2003 (1)

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

2002 (2)

Y. K. Nahmias and D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

2001 (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

1994 (1)

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

1991 (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3835 (1991).
[CrossRef]

1988 (2)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[CrossRef]

Badenes, G.

Brenner, H.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff, 1973).

Bryant, P. E.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Bu, J.

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

Cizmar, T.

K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, “Cellular and colloidal separation using optical forces,” in Methods in Cell Biology, M. Berns and K. Greulich, eds. (Elsevier, 2007), Vol. 82, pp. 467–495.

Cižmár, T.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Cižmer, T.

P. Jekl, T. Čižmer, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Dearing, M. T.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Dholakia, K.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A 9, S134–S138 (2007).
[CrossRef]

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
[CrossRef]

G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepulveda, and P. Zemánek, “Transverse particle dynamics in a Bessel beam,” Opt. Express 15, 13972–13987 (2007).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

M. P. MacDonald, S. Neale, L. Paterson, A. Riches, G. C. Spalding, and K. Dholakia, “Microfluidic optical sorting: particle selection in an optical lattice,” Proc. SPIE 5514, 1–14 (2004).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, “Cellular and colloidal separation using optical forces,” in Methods in Cell Biology, M. Berns and K. Greulich, eds. (Elsevier, 2007), Vol. 82, pp. 467–495.

Dufresne, E. R.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Garcés-Chávez, V.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Gelles, J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

Givan, A. L.

A. L. Givan, Flow Cytometry: First Principles, 2nd ed.(Wiley-Liss, 2001), p. 27.

Gouesbet, G.

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

G. Gouesbet, B. Maheu, and G. Gréhan, “Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,” J. Opt. Soc. Am. A 5, 1427–1443 (1988).
[CrossRef]

Gréha, G.

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

Gréhan, G.

Grier, D. G.

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation,” Phys. Rev. E 82, 051407 (2010).
[CrossRef]

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting microscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Gunn-Moore, F. J.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Happel, J.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff, 1973).

Hart, S. J.

A. Terray, J. D. Taylor, and S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106 (2009).
[CrossRef]

Jekl, P.

P. Jekl, T. Čižmer, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

Kasza, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting microscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

Kitamura, N.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3835 (1991).
[CrossRef]

Koshioka, M.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3835 (1991).
[CrossRef]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Ladavac, K.

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting microscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

Liu, R.

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

MacDonald, M.

MacDonald, M. P.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A 9, S134–S138 (2007).
[CrossRef]

M. P. MacDonald, S. Neale, L. Paterson, A. Riches, G. C. Spalding, and K. Dholakia, “Microfluidic optical sorting: particle selection in an optical lattice,” Proc. SPIE 5514, 1–14 (2004).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, “Cellular and colloidal separation using optical forces,” in Methods in Cell Biology, M. Berns and K. Greulich, eds. (Elsevier, 2007), Vol. 82, pp. 467–495.

Maheu, B.

Masuhara, H.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3835 (1991).
[CrossRef]

McGloin, D.

Milne, G.

G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepulveda, and P. Zemánek, “Transverse particle dynamics in a Bessel beam,” Opt. Express 15, 13972–13987 (2007).
[CrossRef]

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32, 1144–1146 (2007).
[CrossRef]

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Misawa, H.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3835 (1991).
[CrossRef]

Nahmias, Y. K.

Y. K. Nahmias and D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
[CrossRef]

Neale, S.

M. P. MacDonald, S. Neale, L. Paterson, A. Riches, G. C. Spalding, and K. Dholakia, “Microfluidic optical sorting: particle selection in an optical lattice,” Proc. SPIE 5514, 1–14 (2004).
[CrossRef]

Nieto-Vesperinas, M.

Odde, D. J.

Y. K. Nahmias and D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
[CrossRef]

Ong, L. S.

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

Papagiakoumou, E.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Paterson, L.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

M. P. MacDonald, S. Neale, L. Paterson, A. Riches, G. C. Spalding, and K. Dholakia, “Microfluidic optical sorting: particle selection in an optical lattice,” Proc. SPIE 5514, 1–14 (2004).
[CrossRef]

Quidant, R.

Ramos-García, R.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Ren, K. F.

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

Rhodes, D.

Ricárdez-Vargas, I.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Riches, A.

M. P. MacDonald, S. Neale, L. Paterson, A. Riches, G. C. Spalding, and K. Dholakia, “Microfluidic optical sorting: particle selection in an optical lattice,” Proc. SPIE 5514, 1–14 (2004).
[CrossRef]

Riches, A. C.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Rodríguez-Montero, P.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Sasaki, K.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3835 (1991).
[CrossRef]

Schnapp, B. J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

Šerý, M.

P. Jekl, T. Čižmer, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Sheets, S. A.

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Sheetz, M. P.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

Sibbett, W.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Šiler, M.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Smith, R. L.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A 9, S134–S138 (2007).
[CrossRef]

Spalding, G. C.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A 9, S134–S138 (2007).
[CrossRef]

M. P. MacDonald, S. Neale, L. Paterson, A. Riches, G. C. Spalding, and K. Dholakia, “Microfluidic optical sorting: particle selection in an optical lattice,” Proc. SPIE 5514, 1–14 (2004).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Sun, Y. Y.

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

Tatarkova, S. A.

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

Taylor, J. D.

A. Terray, J. D. Taylor, and S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106 (2009).
[CrossRef]

Terray, A.

A. Terray, J. D. Taylor, and S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106 (2009).
[CrossRef]

Volke-Sepulveda, K.

Volke-Sepúlveda, K.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Xiao, K.

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation,” Phys. Rev. E 82, 051407 (2010).
[CrossRef]

Yuan, X.-C.

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

Zelenina, A. S.

Zemanek, P.

K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, “Cellular and colloidal separation using optical forces,” in Methods in Cell Biology, M. Berns and K. Greulich, eds. (Elsevier, 2007), Vol. 82, pp. 467–495.

Zemánek, P.

P. Jekl, T. Čižmer, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

G. Milne, K. Dholakia, D. McGloin, K. Volke-Sepulveda, and P. Zemánek, “Transverse particle dynamics in a Bessel beam,” Opt. Express 15, 13972–13987 (2007).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Zhu, S. W.

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

L. Paterson, E. Papagiakoumou, G. Milne, V. Garcés-Chávez, S. A. Tatarkova, W. Sibbett, F. J. Gunn-Moore, P. E. Bryant, A. C. Riches, and K. Dholakia, “Light-induced cell separation in a tailored optical landscape,” Appl. Phys. Lett. 87, 123901 (2005).
[CrossRef]

P. Jekl, T. Čižmer, M. Šerý, and P. Zemánek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88, 121116 (2006).
[CrossRef]

Y. Y. Sun, X.-C. Yuan, L. S. Ong, J. Bu, S. W. Zhu, and R. Liu, “Large-scale optical traps on a chip for optical sorting,” Appl. Phys. Lett. 90, 031107 (2007).
[CrossRef]

Biomicrofluidics (1)

A. Terray, J. D. Taylor, and S. J. Hart, “Cascade optical chromatography for sample fractionation,” Biomicrofluidics 3, 044106 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. K. Nahmias and D. J. Odde, “Analysis of radiation forces in laser trapping and laser-guided direct writing applications,” IEEE J. Quantum Electron. 38, 131–141 (2002).
[CrossRef]

J. Appl. Phys. (1)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, and H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3835 (1991).
[CrossRef]

J. Opt. A (1)

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, “Colloidal sorting in dynamic optical lattices,” J. Opt. A 9, S134–S138 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (2)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, “Tracking kinesin-driven movements with nanometre-scale precision,” Nature 331, 450–453 (1988).
[CrossRef]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426, 421–424 (2003).
[CrossRef]

Opt. Commun. (2)

K. F. Ren, G. Gréha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz–Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
[CrossRef]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (1)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Phys. Rev. E (2)

K. Ladavac, K. Kasza, and D. G. Grier, “Sorting microscopic objects with periodic potential landscapes: optical fractionation,” Phys. Rev. E 70, 010901 (2004).
[CrossRef]

K. Xiao and D. G. Grier, “Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation,” Phys. Rev. E 82, 051407 (2010).
[CrossRef]

Proc. SPIE (1)

M. P. MacDonald, S. Neale, L. Paterson, A. Riches, G. C. Spalding, and K. Dholakia, “Microfluidic optical sorting: particle selection in an optical lattice,” Proc. SPIE 5514, 1–14 (2004).
[CrossRef]

Rev. Sci. Instrum. (1)

E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72, 1810–1816 (2001).
[CrossRef]

Other (3)

K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, “Cellular and colloidal separation using optical forces,” in Methods in Cell Biology, M. Berns and K. Greulich, eds. (Elsevier, 2007), Vol. 82, pp. 467–495.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Noordhoff, 1973).

A. L. Givan, Flow Cytometry: First Principles, 2nd ed.(Wiley-Liss, 2001), p. 27.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(i) Trapping force profiles and (ii) maximum trapping forces for particle sizes 2, 3, and 5 μm. (iii) Fluid drag force for particles with different sizes under a flow speed of 150μm/s. (iv) Drag force versus trapping force ratio for different particle sizes.

Fig. 2.
Fig. 2.

(i) Trapping force profiles for polystyrene (refractive index 1.59) and silica spheres (refractive index 1.43), both having diameter of approximately 3 μm. (ii) Drag force versus trapping force ratio for the two types of particles.

Fig. 3.
Fig. 3.

(i) Schematic of the experimental setup. MO is the microscope objective, M1–M3 are the steering mirrors, and DM1 is the dichroic mirror used for coupling the trap laser beam into the objective lens. (ii) Sample chamber used for experiments. The chamber is clamped on the motorized microscope stage to generate the relative motion of the sample with respect to the trap array.

Fig. 4.
Fig. 4.

(i) Configuration of the trap array pattern. The dark circles indicate the position of the traps at an instance of time. Value of b=5μm. (ii) Periodic motion of each trap points along x and y axes. (iii) Optical trap array at an instant of time as seen from the backreflected laser light from the coverslip surface. Scale bar, 5 μm. (iv) Concept of optical sorting using the moving trap array.

Fig. 5.
Fig. 5.

Measured values of peak trapping forces for different sizes of silica spheres. The corresponding theoretical estimates [Fig. 1(ii)] are also shown for comparison.

Fig. 6.
Fig. 6.

(i) Image frames showing motion of 5 and 3 μm silica spheres through the moving optical traps. Scale bar, 5 μm. (ii) Particle trajectories, shown as dark lines for 3 μm particles and faded lines for 5 μm particles.

Fig. 7.
Fig. 7.

(i) Image frames showing motion of 3 and 2 μm silica spheres through the moving optical traps. Scale bar, 5 μm. (ii) Particle trajectories, shown as dark lines for 2 μm particles and faded lines for 3 μm particles.

Fig. 8.
Fig. 8.

(i) Image frames showing motion of 3 μm silica (faded appearance) and polystyrene (dark appearance) spheres through the moving optical traps. Scale bar, 5 μm. (ii) Particle trajectories, shown as dark lines for polystyrene particles and faded lines for silica particles.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

FD=6πηav,
η=η[1(916)(ah)+(18)(ah)3(45256)(ah)4(116)(ah)5]1,
F(r⃗)=(nmc)2Pπωo2[x^Cpr,x(r)+y^Cpr,y(r)+z^Cpr,z(r)],

Metrics