Abstract

A polarization averaged short-time Fourier transform (PASTFT) technique is developed for distributed fiber birefringence characterization based on counterpropagating stimulated Brillouin scattering (SBS) gain signal. This technique can be used for the birefringence characterization of the general elliptical birefringent fiber. A theoretical model on polarization matching of counterpropagating SBS process is established. The performance of the short-time Fourier transform (STFT) method and the PASTFT technique is analyzed by using the simulation of the theoretical model. Simulation results show that the process of polarization average could effectively reduce the birefringence characterization error caused by the polarization dependence of the local period of SBS gain. A less than 8% normalized root mean square error is achieved for the characterization of the length of the birefringence vector on elliptical birefringent fibers. The PASTFT technique is experimentally verified by the distributed measurement of beat length and differential group delay of a standard single-mode fiber via the Brillouin optical time domain analysis system.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
    [CrossRef]
  2. F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
    [CrossRef]
  3. C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurement based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
    [CrossRef]
  4. B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10, 1458–1460 (1998).
    [CrossRef]
  5. B. J. Soller, D. K. Gifford, M. S. Wolfe, and M. E. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13, 666–674 (2005).
    [CrossRef]
  6. M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, “Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry,” J. Lightwave Technol. 24, 4149–4154 (2006).
    [CrossRef]
  7. A. J. Rogers, “Polarization-optical time domain reflectometry: a technique for the measurement of field distributions,” Appl. Opt. 20, 1060–1074 (1981).
    [CrossRef]
  8. S. V. Shatalin and A. J. Rogers, “Location of high PMD sections of installed system fiber,” J. Lightwave Technol. 24, 3875–3881 (2006).
    [CrossRef]
  9. F. Corsi, A. Galtarossa, and L. Palmieri, “Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique,” J. Lightwave Technol. 16, 1832–1843 (1998).
    [CrossRef]
  10. F. Corsi, A. Galtarossa, and L. Palmieri, “Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers,” J. Lightwave Technol. 17, 1172–1178 (1999).
    [CrossRef]
  11. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurement of beat length and perturbation length in long single-mode fibers,” Opt. Lett. 25, 384–386 (2000).
    [CrossRef]
  12. B. Huttner, B. Gisin, and N. Gisin, “Distributed PMD measurement with a polarization-OTDR in optical fibers,” J. Lightwave Technol. 17, 1843–1848 (1999).
    [CrossRef]
  13. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Statistical characterization of fiber random birefringence,” Opt. Lett. 25, 1322–1324 (2000).
    [CrossRef]
  14. L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011).
    [CrossRef]
  15. H. Dong, P. Shum, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Spectral-resolved backreflection measurement of polarization mode dispersion in optical fibers,” Opt. Lett. 32, 1665–1667 (2007).
    [CrossRef]
  16. A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques,” IEEE Photon. Technol. Lett. 20, 1944–1946 (2008).
    [CrossRef]
  17. L. Palmieri, S. K. Fosuhene, A. W. R. Leitch, and A. Galtarossa, “Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 23, 260–262 (2011).
    [CrossRef]
  18. A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers: theory and experiments,” J. Lightwave Technol. 20, 1149–1159 (2002).
    [CrossRef]
  19. L. Palmieri, “Polarization properties of spun single-mode fibers,” J. Lightwave Technol. 24, 4075–4088 (2006).
    [CrossRef]
  20. R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.
  21. J. G. Ellison and A. S. Siddiqui, “A fully polarimetric optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 10, 246–248 (1998).
    [CrossRef]
  22. J. G. Ellison and A. S. Siddiqui, “Automatic matrix-based analysis method for extraction of optical fiber parameters from polarimetric optical time domain reflectometry data,” J. Lightwave Technol. 18, 1226–1232 (2000).
    [CrossRef]
  23. T. Gogolla and K. Krebber, “Distributed beat length measurement in single-mode optical fibers using stimulated Brillouin-scattering and frequency-domain analysis,” J. Lightwave Technol. 18, 320–328 (2000).
    [CrossRef]
  24. L. Thévenaz, M. Facchini, A. Fellay, M. Niklès, and P. Robert, “Evolution of local birefringence along fibers using Brillouin analysis,” in Conference Digest OFMC’97 (NPL Publication, 1997), pp. 82–85.
  25. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  26. A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691–693 (1998).
    [CrossRef]
  27. L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Proceedings of OFC/NFOEC 2008 (IEEE, 2008), paper OML7.
  28. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard singlemode fibers,” Opt. Express 16, 21692–21707 (2008).
    [CrossRef]
  29. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.
  30. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
    [CrossRef]
  31. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
    [CrossRef]
  32. G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
    [CrossRef]
  33. F. Curti, B. Daino, G. De Matchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
    [CrossRef]
  34. N. Gisin, J. P. V. der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9, 821–827 (1991).
    [CrossRef]
  35. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electron. Lett. 22, 1029–1030 (1986).
    [CrossRef]
  36. S. Xie, M. Pang, X. Bao, and L. Chen, “Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing,” Opt. Express 20, 6385–6399 (2012).
    [CrossRef]
  37. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
    [CrossRef]
  38. M. Niklès, L. Thévenaz, and P. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
    [CrossRef]
  39. R. Ulrich, S. C. Rashleigh, and W. Eickhoff, “Bending-induced birefringence in single-mode fibers,” Opt. Lett. 5, 273–275 (1980).
    [CrossRef]
  40. S. C. Rashleigh and R. Ulrich, “Polarization mode dispersion in single-mode fibers,” Opt. Lett. 3, 60–62 (1978).
    [CrossRef]
  41. D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998).

2012 (1)

2011 (2)

L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011).
[CrossRef]

L. Palmieri, S. K. Fosuhene, A. W. R. Leitch, and A. Galtarossa, “Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 23, 260–262 (2011).
[CrossRef]

2008 (2)

A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques,” IEEE Photon. Technol. Lett. 20, 1944–1946 (2008).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard singlemode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

2007 (1)

2006 (3)

2005 (1)

2002 (1)

2000 (5)

1999 (2)

1998 (4)

F. Corsi, A. Galtarossa, and L. Palmieri, “Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique,” J. Lightwave Technol. 16, 1832–1843 (1998).
[CrossRef]

A. Melloni, M. Frasca, A. Garavaglia, A. Tonini, and M. Martinelli, “Direct measurement of electrostriction in optical fibers,” Opt. Lett. 23, 691–693 (1998).
[CrossRef]

J. G. Ellison and A. S. Siddiqui, “A fully polarimetric optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 10, 246–248 (1998).
[CrossRef]

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10, 1458–1460 (1998).
[CrossRef]

1996 (1)

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

1994 (2)

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurement based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

1992 (1)

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
[CrossRef]

1991 (2)

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
[CrossRef]

N. Gisin, J. P. V. der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9, 821–827 (1991).
[CrossRef]

1990 (2)

F. Curti, B. Daino, G. De Matchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

1986 (1)

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electron. Lett. 22, 1029–1030 (1986).
[CrossRef]

1981 (1)

1980 (1)

1978 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Bao, X.

S. Xie, M. Pang, X. Bao, and L. Chen, “Polarization dependence of Brillouin linewidth and peak frequency due to fiber inhomogeneity in single mode fiber and its impact on distributed fiber Brillouin sensing,” Opt. Express 20, 6385–6399 (2012).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Bebbington, D. H. O.

R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.

Boot, A. J.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

Chen, L.

Corsi, F.

Curti, F.

F. Curti, B. Daino, G. De Matchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

Daino, B.

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

F. Curti, B. Daino, G. De Matchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

De Marchis, G.

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

De Matchis, G.

F. Curti, B. Daino, G. De Matchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

der Weid, J. P. V.

N. Gisin, J. P. V. der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9, 821–827 (1991).
[CrossRef]

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998).

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Dong, H.

Eickhoff, W.

Ellison, J. G.

J. G. Ellison and A. S. Siddiqui, “Automatic matrix-based analysis method for extraction of optical fiber parameters from polarimetric optical time domain reflectometry data,” J. Lightwave Technol. 18, 1226–1232 (2000).
[CrossRef]

J. G. Ellison and A. S. Siddiqui, “A fully polarimetric optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 10, 246–248 (1998).
[CrossRef]

R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.

Eyal, A.

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard singlemode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Proceedings of OFC/NFOEC 2008 (IEEE, 2008), paper OML7.

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

Facchini, M.

L. Thévenaz, M. Facchini, A. Fellay, M. Niklès, and P. Robert, “Evolution of local birefringence along fibers using Brillouin analysis,” in Conference Digest OFMC’97 (NPL Publication, 1997), pp. 82–85.

Favin, D. L.

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurement based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

Fellay, A.

L. Thévenaz, M. Facchini, A. Fellay, M. Niklès, and P. Robert, “Evolution of local birefringence along fibers using Brillouin analysis,” in Conference Digest OFMC’97 (NPL Publication, 1997), pp. 82–85.

Foschini, G. J.

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
[CrossRef]

Fosuhene, S. K.

L. Palmieri, S. K. Fosuhene, A. W. R. Leitch, and A. Galtarossa, “Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 23, 260–262 (2011).
[CrossRef]

Frasca, M.

Froggatt, M. E.

Galtarossa, A.

L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011).
[CrossRef]

L. Palmieri, S. K. Fosuhene, A. W. R. Leitch, and A. Galtarossa, “Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 23, 260–262 (2011).
[CrossRef]

A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques,” IEEE Photon. Technol. Lett. 20, 1944–1946 (2008).
[CrossRef]

A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers: theory and experiments,” J. Lightwave Technol. 20, 1149–1159 (2002).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Statistical characterization of fiber random birefringence,” Opt. Lett. 25, 1322–1324 (2000).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurement of beat length and perturbation length in long single-mode fibers,” Opt. Lett. 25, 384–386 (2000).
[CrossRef]

F. Corsi, A. Galtarossa, and L. Palmieri, “Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers,” J. Lightwave Technol. 17, 1172–1178 (1999).
[CrossRef]

F. Corsi, A. Galtarossa, and L. Palmieri, “Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique,” J. Lightwave Technol. 16, 1832–1843 (1998).
[CrossRef]

Garavaglia, A.

Geisler, T.

Gifford, D. K.

Gisin, B.

Gisin, N.

B. Huttner, B. Gisin, and N. Gisin, “Distributed PMD measurement with a polarization-OTDR in optical fibers,” J. Lightwave Technol. 17, 1843–1848 (1999).
[CrossRef]

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10, 1458–1460 (1998).
[CrossRef]

N. Gisin, J. P. V. der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9, 821–827 (1991).
[CrossRef]

Gleeson, L. M.

R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.

Gogolla, T.

Gong, Y. D.

Gordon, J. P.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef]

Grosso, D.

A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques,” IEEE Photon. Technol. Lett. 20, 1944–1946 (2008).
[CrossRef]

Heffner, B. L.

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
[CrossRef]

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Huttner, B.

B. Huttner, B. Gisin, and N. Gisin, “Distributed PMD measurement with a polarization-OTDR in optical fibers,” J. Lightwave Technol. 17, 1843–1848 (1999).
[CrossRef]

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10, 1458–1460 (1998).
[CrossRef]

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Kogelnik, H.

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef]

Krebber, K.

Kreger, S.

Leitch, A. W. R.

L. Palmieri, S. K. Fosuhene, A. W. R. Leitch, and A. Galtarossa, “Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 23, 260–262 (2011).
[CrossRef]

Martinelli, M.

Matera, F.

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

F. Curti, B. Daino, G. De Matchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

Melloni, A.

Niklès, M.

M. Niklès, L. Thévenaz, and P. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef]

L. Thévenaz, M. Facchini, A. Fellay, M. Niklès, and P. Robert, “Evolution of local birefringence along fibers using Brillouin analysis,” in Conference Digest OFMC’97 (NPL Publication, 1997), pp. 82–85.

Ning, G. X.

Palmieri, L.

L. Palmieri, T. Geisler, and A. Galtarossa, “Limits of applicability of polarization sensitive reflectometry,” Opt. Express 19, 10874–10879 (2011).
[CrossRef]

L. Palmieri, S. K. Fosuhene, A. W. R. Leitch, and A. Galtarossa, “Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 23, 260–262 (2011).
[CrossRef]

A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques,” IEEE Photon. Technol. Lett. 20, 1944–1946 (2008).
[CrossRef]

L. Palmieri, “Polarization properties of spun single-mode fibers,” J. Lightwave Technol. 24, 4075–4088 (2006).
[CrossRef]

A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers: theory and experiments,” J. Lightwave Technol. 20, 1149–1159 (2002).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Statistical characterization of fiber random birefringence,” Opt. Lett. 25, 1322–1324 (2000).
[CrossRef]

A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measurement of beat length and perturbation length in long single-mode fibers,” Opt. Lett. 25, 384–386 (2000).
[CrossRef]

F. Corsi, A. Galtarossa, and L. Palmieri, “Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers,” J. Lightwave Technol. 17, 1172–1178 (1999).
[CrossRef]

F. Corsi, A. Galtarossa, and L. Palmieri, “Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique,” J. Lightwave Technol. 16, 1832–1843 (1998).
[CrossRef]

Pang, M.

Passy, R.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10, 1458–1460 (1998).
[CrossRef]

Pellaux, J. P.

N. Gisin, J. P. V. der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9, 821–827 (1991).
[CrossRef]

Poole, C. D.

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurement based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
[CrossRef]

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electron. Lett. 22, 1029–1030 (1986).
[CrossRef]

Rashleigh, S. C.

Reecht, J.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10, 1458–1460 (1998).
[CrossRef]

Robert, P.

M. Niklès, L. Thévenaz, and P. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef]

L. Thévenaz, M. Facchini, A. Fellay, M. Niklès, and P. Robert, “Evolution of local birefringence along fibers using Brillouin analysis,” in Conference Digest OFMC’97 (NPL Publication, 1997), pp. 82–85.

Rogers, A. J.

Schenato, L.

A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques,” IEEE Photon. Technol. Lett. 20, 1944–1946 (2008).
[CrossRef]

Schiano, M.

Schuh, R. E.

R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.

Shatalin, S. V.

Shum, P.

Siddiqui, A. S.

J. G. Ellison and A. S. Siddiqui, “Automatic matrix-based analysis method for extraction of optical fiber parameters from polarimetric optical time domain reflectometry data,” J. Lightwave Technol. 18, 1226–1232 (2000).
[CrossRef]

J. G. Ellison and A. S. Siddiqui, “A fully polarimetric optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 10, 246–248 (1998).
[CrossRef]

R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.

Sikora, E. S. R.

R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.

Soller, B. J.

Tambosso, T.

Thévenaz, L.

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard singlemode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

M. Niklès, L. Thévenaz, and P. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

L. Thévenaz, M. Facchini, A. Fellay, M. Niklès, and P. Robert, “Evolution of local birefringence along fibers using Brillouin analysis,” in Conference Digest OFMC’97 (NPL Publication, 1997), pp. 82–85.

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Proceedings of OFC/NFOEC 2008 (IEEE, 2008), paper OML7.

Tonini, A.

Tur, M.

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard singlemode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Proceedings of OFC/NFOEC 2008 (IEEE, 2008), paper OML7.

Ulrich, R.

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

von der Weid, J. P.

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10, 1458–1460 (1998).
[CrossRef]

Wagner, R. E.

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electron. Lett. 22, 1029–1030 (1986).
[CrossRef]

Walker, N. G.

R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.

Webb, D. J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

Wolfe, M.

Wolfe, M. S.

Wu, C. Q.

Xie, S.

Zadok, A.

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard singlemode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Proceedings of OFC/NFOEC 2008 (IEEE, 2008), paper OML7.

Zhou, J. Q.

Zilka, E.

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard singlemode fibers,” Opt. Express 16, 21692–21707 (2008).
[CrossRef]

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

Appl. Opt. (1)

Electron. Lett. (1)

C. D. Poole and R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibres,” Electron. Lett. 22, 1029–1030 (1986).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4, 1066–1069 (1992).
[CrossRef]

B. Huttner, J. Reecht, N. Gisin, R. Passy, and J. P. von der Weid, “Local birefringence measurements in single-mode fibers with coherent optical frequency-domain reflectometry,” IEEE Photon. Technol. Lett. 10, 1458–1460 (1998).
[CrossRef]

A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, “Distributed polarization-mode-dispersion measurement in fiber links by polarization-sensitive reflectometric techniques,” IEEE Photon. Technol. Lett. 20, 1944–1946 (2008).
[CrossRef]

L. Palmieri, S. K. Fosuhene, A. W. R. Leitch, and A. Galtarossa, “Single-end measurement of root mean square differential group delay in single-mode fibers by polarization optical time-domain reflectometry,” IEEE Photon. Technol. Lett. 23, 260–262 (2011).
[CrossRef]

J. G. Ellison and A. S. Siddiqui, “A fully polarimetric optical time-domain reflectometer,” IEEE Photon. Technol. Lett. 10, 246–248 (1998).
[CrossRef]

J. Lightwave Technol. (16)

F. Curti, B. Daino, G. De Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

C. D. Poole and D. L. Favin, “Polarization-mode dispersion measurement based on transmission spectra through a polarizer,” J. Lightwave Technol. 12, 917–929 (1994).
[CrossRef]

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13, 1340–1348 (1995).
[CrossRef]

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single mode fibers,” J. Lightwave Technol. 12, 585–590 (1994).
[CrossRef]

G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9, 1439–1456 (1991).
[CrossRef]

F. Curti, B. Daino, G. De Matchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162–1166 (1990).
[CrossRef]

N. Gisin, J. P. V. der Weid, and J. P. Pellaux, “Polarization mode dispersion of short and long single-mode fibers,” J. Lightwave Technol. 9, 821–827 (1991).
[CrossRef]

T. Gogolla and K. Krebber, “Distributed beat length measurement in single-mode optical fibers using stimulated Brillouin-scattering and frequency-domain analysis,” J. Lightwave Technol. 18, 320–328 (2000).
[CrossRef]

J. G. Ellison and A. S. Siddiqui, “Automatic matrix-based analysis method for extraction of optical fiber parameters from polarimetric optical time domain reflectometry data,” J. Lightwave Technol. 18, 1226–1232 (2000).
[CrossRef]

F. Corsi, A. Galtarossa, and L. Palmieri, “Beat length characterization based on backscattering analysis in randomly perturbed single-mode fibers,” J. Lightwave Technol. 17, 1172–1178 (1999).
[CrossRef]

B. Huttner, B. Gisin, and N. Gisin, “Distributed PMD measurement with a polarization-OTDR in optical fibers,” J. Lightwave Technol. 17, 1843–1848 (1999).
[CrossRef]

F. Corsi, A. Galtarossa, and L. Palmieri, “Polarization mode dispersion characterization of single-mode optical fiber using backscattering technique,” J. Lightwave Technol. 16, 1832–1843 (1998).
[CrossRef]

A. Galtarossa and L. Palmieri, “Measure of twist-induced circular birefringence in long single-mode fibers: theory and experiments,” J. Lightwave Technol. 20, 1149–1159 (2002).
[CrossRef]

S. V. Shatalin and A. J. Rogers, “Location of high PMD sections of installed system fiber,” J. Lightwave Technol. 24, 3875–3881 (2006).
[CrossRef]

L. Palmieri, “Polarization properties of spun single-mode fibers,” J. Lightwave Technol. 24, 4075–4088 (2006).
[CrossRef]

M. E. Froggatt, D. K. Gifford, S. Kreger, M. Wolfe, and B. J. Soller, “Characterization of polarization-maintaining fiber using high-sensitivity optical-frequency-domain reflectometry,” J. Lightwave Technol. 24, 4149–4154 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Proc. Natl. Acad. Sci. USA (1)

J. P. Gordon and H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541–4550 (2000).
[CrossRef]

Other (6)

D. Derickson, Fiber Optic Test and Measurement (Prentice-Hall, 1998).

L. Thévenaz, M. Facchini, A. Fellay, M. Niklès, and P. Robert, “Evolution of local birefringence along fibers using Brillouin analysis,” in Conference Digest OFMC’97 (NPL Publication, 1997), pp. 82–85.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplification,” in Proceedings of OFC/NFOEC 2008 (IEEE, 2008), paper OML7.

A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Fiber beat length estimates via polarization measurements of stimulated Brillouin scattering amplified signals,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OMP4.

R. E. Schuh, J. G. Ellison, L. M. Gleeson, E. S. R. Sikora, A. S. Siddiqui, N. G. Walker, and D. H. O. Bebbington, “Theoretical analysis and measurement of the effect of fiber twist on the polarization OTDR of optical fibers,” in Optical Fiber Communication Conference, Vol. 2, OSA Technical Digest Series (Optical Society of America, 1996), paper FA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Illustration of the wave plate model.

Fig. 2.
Fig. 2.

PMF (a) Brillouin gain signal (b) SOP evolution of pump and probe waves on Poincaré sphere.

Fig. 3.
Fig. 3.

STFT results of SBS gain signal using different WSTFT on PMF.

Fig. 4.
Fig. 4.

SBS gain signal of 35 m elliptical birefringent fiber when (a) probe wave is launched at PSPmax or PSPmin, (b) probe wave is launched at another SOP, and (c) SOP evolution of pump and probe waves on Poincaré sphere when two waves are launched at PSPmax.

Fig. 5.
Fig. 5.

Comparison of actual and recovered length of βi on 35 m elliptical birefringent fiber.

Fig. 6.
Fig. 6.

Simulated normalized RMSE versus number of SOP averages on 35 m elliptical birefringent fiber for (a) βi sets the same as that in Fig. 4(a). (b) 20 different βi sets with same statistical parameters.

Fig. 7.
Fig. 7.

Experimental setup.

Fig. 8.
Fig. 8.

Measured SBS gain signal of the 80 and 20 m SMF-28 fiber wrapped on drums with 150 and 85 mm diameter, respectively.

Fig. 9.
Fig. 9.

Recovered β(z) on the 100 m SMF-28 fiber.

Fig. 10.
Fig. 10.

Recovered LBi(z) (blue curve) and Δτ(z) (red curve) of the 100 m SMF-28 fiber.

Fig. 11.
Fig. 11.

Recovered (a) β(z) of the entire 24.65 km SMF-28 fiber (b) β(z) of the last 80 m fiber.

Tables (2)

Tables Icon

Table 1. Simulation Results of Spatial Frequency Estimation Value and Error at Different WSTFT

Tables Icon

Table 2. Simulation Result of the Number of SOP Averages Needed for Convergence and Normalized RMSE before and after SOP Average on Different Lengths of Elliptical Birefringent Fibers

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

kPf,s+krf,s=ΩBf,sυA,
ωPωr=ΩBf,s,
ΩBf,s=2nefff,sωPcυA,
ΔnSBS=gpc|Ep+Er|22ωpAeff(δ1+δ2),
ΔnKf=n2(|Ep(r)f|2+23|Ep(r)s|2),
ΔnKs=n2(|Ep(r)s|2+23|Ep(r)f|2),
Ti(z)=exp(i12zβi·σ),
T⃖i(z)=exp[i12(liz)β⃖i·σ],
σ1=(1001),σ2=(0110),σ3=(0jj0).
βi=βi12+βi22+βi32=2πLBi.
|Ep(Z)=Tp(Z)|Ep(0)=Tj(z)Tj1(lj1)T2(l2)T1(l1)|Ep(0),
|Er(Z)=T⃖r(Z)|Er(L)=T⃖j(ljz)T⃖j+1(lj+1)T⃖N1(lN1)T⃖N(lN)|Er(L).
γ(Z)=Ep(Z)|Er(Z)Er(Z)|Ep(Z),
γ(Z)=Ep(0)|Tp(Z)T⃖r(Z)|Er(L)Er(L)|T⃖r(Z)Tp(Z)|Ep(0).
LB(z)=2πβ(z)=λpΔneff(z),
ddzΔτ(z)=Δneff(z)c+ωpc(dΔneff(z)dω).
ddzΔτ(z)Δneff(z)c.
Δτ=Δτ12+Δτ22+···+ΔτN2,
GmaxGminexp(γ0PpumpLi/2)11.006,

Metrics