Abstract

We demonstrate writing and probing of light-induced waveguides in photorefractive bulk LiNbO3 crystal using an endlessly single-mode photonic crystal fiber. The optical waveguides are written at visible wavelengths by slightly raising the ferroelectric crystal temperature to benefit from the pyroelectric-driven photorefractive effect and the guiding properties are investigated at telecom wavelengths using the same photonic crystal fiber. End butt coupling with this photonic crystal fiber enables writing and probing of optical waveguides due to the self-alignment properties of spatial solitons.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
    [CrossRef]
  2. A. D. Boardman and A. P. Sukhorukov, Soliton Driven Photonics (Kluwer Academic, 2001).
  3. S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, 2001).
  4. K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71, 3275–3278 (1993).
    [CrossRef]
  5. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
    [CrossRef]
  6. G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
    [CrossRef]
  7. M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
    [CrossRef]
  8. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
    [CrossRef]
  9. M. Chauvet, “Temporal analysis of open-circuit dark photovoltaic spatial solitons,” J. Opt. Soc. Am. B 20, 2515–2522 (2003).
    [CrossRef]
  10. J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17, 22209–22216 (2009).
    [CrossRef]
  11. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef]
  12. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
    [CrossRef]
  13. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef]
  14. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28, 1433–1435 (2003).
    [CrossRef]
  15. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
    [CrossRef]
  16. J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive LiNbO3,” J. Opt. Soc. Am. B 26, 487–492 (2009).
    [CrossRef]
  17. K. K. Wong, Properties of Lithium Niobate (The Institution of Engineering and Technology, 2002).
  18. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  19. M.-F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091–3101 (1997).
    [CrossRef]
  20. T. Tamir, Guided-Wave Optoelectronics, Springer Series in Electronics and Photonics (Springer Verlag, 1990).
  21. F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. A 81, 013825(2010).
    [CrossRef]
  22. F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [CrossRef]

2010 (1)

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. A 81, 013825(2010).
[CrossRef]

2009 (2)

2004 (1)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

2003 (3)

2000 (1)

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

1997 (2)

1996 (2)

1994 (1)

M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef]

1993 (3)

F. Jermann and J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71, 3275–3278 (1993).
[CrossRef]

1985 (1)

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Alonzo, M.

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Assanto, G.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Barthélémy, A.

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[CrossRef]

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

Birks, T. A.

Boardman, A. D.

A. D. Boardman and A. P. Sukhorukov, Soliton Driven Photonics (Kluwer Academic, 2001).

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Chauvet, M.

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. A 81, 013825(2010).
[CrossRef]

J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive LiNbO3,” J. Opt. Soc. Am. B 26, 487–492 (2009).
[CrossRef]

J. Safioui, F. Devaux, and M. Chauvet, “Pyroliton: pyroelectric spatial soliton,” Opt. Express 17, 22209–22216 (2009).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

M. Chauvet, “Temporal analysis of open-circuit dark photovoltaic spatial solitons,” J. Opt. Soc. Am. B 20, 2515–2522 (2003).
[CrossRef]

Chen, Z.

Coda, V.

Crosignani, B.

M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

Davis, K. M.

De Luca, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

De Rossi, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Devaux, F.

Di Porto, P.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

Diporto, P.

M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef]

Duree, G. C.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Eason, R. W.

Fazio, E.

J. Safioui, M. Chauvet, F. Devaux, V. Coda, F. Pettazzi, M. Alonzo, and E. Fazio, “Polarization and configuration dependence of beam self-focusing in photorefractive LiNbO3,” J. Opt. Soc. Am. B 26, 487–492 (2009).
[CrossRef]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

Feigelson, R. S.

Froehly, C.

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[CrossRef]

Gawith, C. B. E.

Hayata, K.

K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71, 3275–3278 (1993).
[CrossRef]

Hirao, K.

Jermann, F.

Khoo, I. C.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Knight, J. C.

Koshiba, M.

K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71, 3275–3278 (1993).
[CrossRef]

Lee, H.

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Mailis, S.

Maneuf, S.

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[CrossRef]

Mitchell, M.

Miura, K.

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Neurgaonkar, R. R.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Otten, J.

Passier, R.

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. A 81, 013825(2010).
[CrossRef]

Peccianti, M.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

Pettazzi, F.

Ramadan, W.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

Riziotis, C.

Russell, P. St. J.

Safioui, J.

Salamo, G. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

Segev, M.

M.-F. Shih, Z. Chen, M. Mitchell, M. Segev, H. Lee, R. S. Feigelson, and J. P. Wilde, “Waveguides induced by photorefractive screening solitons,” J. Opt. Soc. Am. B 14, 3091–3101 (1997).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

Sharp, E. J.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

Shih, M.-F.

Shultz, J. L.

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

Smith, P. G. R.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Sugimoto, N.

Sukhorukov, A. P.

A. D. Boardman and A. P. Sukhorukov, Soliton Driven Photonics (Kluwer Academic, 2001).

Tamir, T.

T. Tamir, Guided-Wave Optoelectronics, Springer Series in Electronics and Photonics (Springer Verlag, 1990).

Torruellas, W. E.

S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, 2001).

Trillo, S.

S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, 2001).

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Umeton, C.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

Valley, G. C.

M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef]

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

Wellington, I. T.

Wilde, J. P.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Wong, K. K.

K. K. Wong, Properties of Lithium Niobate (The Institution of Engineering and Technology, 2002).

Yariv, A.

M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef]

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

Appl. Phys. A (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A 77, 109–111 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, W. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193–2195 (2004).
[CrossRef]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7–9 (2000).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non-linéarité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

F. Devaux, J. Safioui, M. Chauvet, and R. Passier, “Two-photoactive-center model applied to photorefractive self-focusing in biased LiNbO3,” Phys. Rev. A 81, 013825(2010).
[CrossRef]

Phys. Rev. Lett. (3)

G. C. Duree, J. L. Shultz, G. J. Salamo, M. Segev, A. Yariv, B. Crosignani, E. J. Sharp, R. R. Neurgaonkar, and P. Di Porto, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533–536 (1993).
[CrossRef]

M. Segev, G. C. Valley, B. Crosignani, P. Diporto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211–3214 (1994).
[CrossRef]

K. Hayata and M. Koshiba, “Multidimensional solitons in quadratic nonlinear media,” Phys. Rev. Lett. 71, 3275–3278 (1993).
[CrossRef]

Other (4)

K. K. Wong, Properties of Lithium Niobate (The Institution of Engineering and Technology, 2002).

A. D. Boardman and A. P. Sukhorukov, Soliton Driven Photonics (Kluwer Academic, 2001).

S. Trillo and W. E. Torruellas, Spatial Solitons (Springer-Verlag, 2001).

T. Tamir, Guided-Wave Optoelectronics, Springer Series in Electronics and Photonics (Springer Verlag, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Experimental setup for writing and probing self-trapped beam waveguides using a lens. D1, D2, diaphragms; PC, polarization controller; OD, optical density; L1, L2, L3, L4, and L5, lenses; PBS, polarizing beam splitter; HWP, half-wave plate; PE, Peltier element. (b) Diffracting beam at low power. (c) Self-trapped beam.

Fig. 2.
Fig. 2.

(a) Vertical and horizontal beam waist at best focusing normalized to input beam waist versus writing input power. (b) Waist of NIR beam guided mode normalized to minimum size mode (26 μm) in resulting waveguides.

Fig. 3.
Fig. 3.

Formation of waveguide using (a)–(c) a self-trapped visible beam and (d)–(f) NIR probing. A vector gives the light polarization direction.

Fig. 4.
Fig. 4.

(a) Schematic of the experimental setup. Output face image of (b) self-focused and (c) free diffracting 633 nm writing beam. Output face image when written waveguide is probed at NIR for (d) extraordinary polarization and (e) ordinary polarization. Vector A denotes the light polarization direction.

Metrics