Abstract

An in-plane constant-efficiency variable-diffraction-angle grating and an in-plane high-angular-selectivity grating are combined to enable a new compact silicon diffractive sensor. This sensor is fabricated in silicon-on-insulator and uses telecommunications wavelengths. A single sensor element has a micron-scale device size and uses intensity-based (as opposed to spectral-based) detection for increased integrability. In-plane diffraction gratings provide an intrinsic splitting mechanism to enable a two-dimensional sensor array. Detection of the relative values of diffracted and transmitted intensities is independent of attenuation and is thus robust. The sensor prototype measures refractive index changes of 104. Simulations indicate that this sensor configuration may be capable of measuring refractive index changes three or four orders of magnitude smaller. The characteristics of this sensor type make it promising for lab-on-a-chip applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sensor. Actuat. B-Chem. 113, 774–781 (2006).
    [CrossRef]
  2. J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors(Springer, 2006), Vol. 4.
  3. P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007).
    [CrossRef]
  4. J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
    [CrossRef]
  5. R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensor. Actuat. B-Chem. 29, 261–267 (1995).
    [CrossRef]
  6. F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
    [CrossRef]
  7. L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009).
    [CrossRef]
  8. B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
    [CrossRef]
  9. L. U. Kempen and R. E. Kunz, “Replicated Mach-Zehnder interferometers with focusing grating couplers for sensing applications,” Sensor. Actuat. B-Chem. 39, 295–299 (1997).
    [CrossRef]
  10. B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sensor. Actuat. A-Phys. 141, 299–306 (2008).
    [CrossRef]
  11. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
    [CrossRef]
  12. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
    [CrossRef]
  13. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [CrossRef]
  14. J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011).
    [CrossRef]
  15. D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999).
    [CrossRef]
  16. MicroChem Corp., Newton, Mass., www.microchem.com .
  17. Soitec, Bernin, France, www.soitec.com .
  18. H. Kogelnik and V. Ramaswamy, “Scaling rules for thin-film optical waveguides,” Appl. Opt. 13, 1857–1862 (1974).
    [CrossRef]
  19. J. S. Maikisch and T. K. Gaylord, “Optimum parallel-face slanted surface-relief gratings,” Appl. Opt. 46, 3674–3681 (2007).
    [CrossRef]
  20. S.-D. Wu, T. K. Gaylord, J. S. Maikisch, and E. N. Glytsis, “Optimization of anisotropically etched silicon surface-relief gratings for substrate-mode optical interconnects,” Appl. Opt. 45, 15–21 (2006).
    [CrossRef]
  21. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  22. E. N. Glytsis and T. K. Gaylord, “Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction,” J. Opt. Soc. Am. A 7, 1399–1420 (1990).
    [CrossRef]
  23. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  24. M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
    [CrossRef]
  25. Zeon Chemicals L. P., Louisville, Ky., www.zeonchemicals.com .
  26. D. K. Brown, “Nanometer scale Bosch process silicon etching,” presented at IEEE Electron Ion Photon Beam and Nanofabrication Conference, Anchorage, Alaska, June 2010.
  27. B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
    [CrossRef]
  28. S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009).
    [CrossRef]
  29. S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
    [CrossRef]
  30. M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009).
    [CrossRef]
  31. J. Ou, T. Glawdel, C. L. Ren, and J. Pawliszyn, “Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins,” Lab Chip 9, 1926–1932 (2009).
    [CrossRef]
  32. B. Dang, M. S. Bakir, and J. D. Meindl, “Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink,” IEEE Electron Device Lett. 27, 117–119 (2006).
    [CrossRef]
  33. B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Pack. 33, 79–87 (2010).
    [CrossRef]
  34. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (Ghent University, 2001).

2011

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011).
[CrossRef]

2010

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Pack. 33, 79–87 (2010).
[CrossRef]

2009

M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009).
[CrossRef]

J. Ou, T. Glawdel, C. L. Ren, and J. Pawliszyn, “Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins,” Lab Chip 9, 1926–1932 (2009).
[CrossRef]

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009).
[CrossRef]

L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009).
[CrossRef]

2008

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sensor. Actuat. A-Phys. 141, 299–306 (2008).
[CrossRef]

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
[CrossRef]

2007

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007).
[CrossRef]

J. S. Maikisch and T. K. Gaylord, “Optimum parallel-face slanted surface-relief gratings,” Appl. Opt. 46, 3674–3681 (2007).
[CrossRef]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef]

2006

S.-D. Wu, T. K. Gaylord, J. S. Maikisch, and E. N. Glytsis, “Optimization of anisotropically etched silicon surface-relief gratings for substrate-mode optical interconnects,” Appl. Opt. 45, 15–21 (2006).
[CrossRef]

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sensor. Actuat. B-Chem. 113, 774–781 (2006).
[CrossRef]

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
[CrossRef]

B. Dang, M. S. Bakir, and J. D. Meindl, “Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink,” IEEE Electron Device Lett. 27, 117–119 (2006).
[CrossRef]

2003

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

1999

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999).
[CrossRef]

1997

L. U. Kempen and R. E. Kunz, “Replicated Mach-Zehnder interferometers with focusing grating couplers for sensing applications,” Sensor. Actuat. B-Chem. 39, 295–299 (1997).
[CrossRef]

1995

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensor. Actuat. B-Chem. 29, 261–267 (1995).
[CrossRef]

1990

1981

1974

Abad, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

Adam, P.

P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sensor. Actuat. B-Chem. 113, 774–781 (2006).
[CrossRef]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Baets, R.

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef]

P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007).
[CrossRef]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Bakir, M. S.

B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Pack. 33, 79–87 (2010).
[CrossRef]

B. Dang, M. S. Bakir, and J. D. Meindl, “Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink,” IEEE Electron Device Lett. 27, 117–119 (2006).
[CrossRef]

Bartolozzi, I.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bienstman, P.

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef]

P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007).
[CrossRef]

P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (Ghent University, 2001).

Bisra, G.

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011).
[CrossRef]

Blanco, F. J.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
[CrossRef]

Brown, D. K.

D. K. Brown, “Nanometer scale Bosch process silicon etching,” presented at IEEE Electron Ion Photon Beam and Nanofabrication Conference, Anchorage, Alaska, June 2010.

Calle, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

Campbell, D. P.

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999).
[CrossRef]

Chao, C.-Y.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Chen, Y.

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009).
[CrossRef]

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
[CrossRef]

Cheng, Y. C.

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sensor. Actuat. A-Phys. 141, 299–306 (2008).
[CrossRef]

Cheung, K. C.

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011).
[CrossRef]

Chrostowski, L.

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011).
[CrossRef]

Cobb, J. M.

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999).
[CrossRef]

Dang, B.

B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Pack. 33, 79–87 (2010).
[CrossRef]

B. Dang, M. S. Bakir, and J. D. Meindl, “Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink,” IEEE Electron Device Lett. 27, 117–119 (2006).
[CrossRef]

De Vos, K.

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef]

P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007).
[CrossRef]

Debackere, P.

P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007).
[CrossRef]

del Rio, J. S.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
[CrossRef]

Deneault, S.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Ditlbacher, H.

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

Dominguez, C.

L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009).
[CrossRef]

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
[CrossRef]

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

Dostalek, J.

P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sensor. Actuat. B-Chem. 113, 774–781 (2006).
[CrossRef]

Elizalde, J.

L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009).
[CrossRef]

Fernandez, L.

L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009).
[CrossRef]

Flueckiger, J.

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011).
[CrossRef]

Fung, W.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Galler, N.

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

Gan, F.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Gaylord, T. K.

Geis, M. W.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Glawdel, T.

J. Ou, T. Glawdel, C. L. Ren, and J. Pawliszyn, “Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins,” Lab Chip 9, 1926–1932 (2009).
[CrossRef]

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Glytsis, E. N.

Grein, M. E.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Grist, S. M.

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011).
[CrossRef]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Guo, L. J.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

Harris, R. D.

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensor. Actuat. B-Chem. 29, 261–267 (1995).
[CrossRef]

Hartman, N. F.

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999).
[CrossRef]

Hidalgo, O. E.

L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009).
[CrossRef]

Hiratsuka, K.

M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009).
[CrossRef]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Hohenau, A.

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

Homola, J.

P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sensor. Actuat. B-Chem. 113, 774–781 (2006).
[CrossRef]

J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors(Springer, 2006), Vol. 4.

Huq, E.

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Jakopic, G.

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kaertner, F. X.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Kempen, L. U.

L. U. Kempen and R. E. Kunz, “Replicated Mach-Zehnder interferometers with focusing grating couplers for sensing applications,” Sensor. Actuat. B-Chem. 39, 295–299 (1997).
[CrossRef]

King, C. R.

B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Pack. 33, 79–87 (2010).
[CrossRef]

Kogelnik, H.

Kono, N.

M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009).
[CrossRef]

Kraker, E.

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

Krenn, J. R.

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

Kunz, R. E.

L. U. Kempen and R. E. Kunz, “Replicated Mach-Zehnder interferometers with focusing grating couplers for sensing applications,” Sensor. Actuat. B-Chem. 39, 295–299 (1997).
[CrossRef]

Lamprecht, B.

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

Lechuga, L. M.

L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009).
[CrossRef]

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
[CrossRef]

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

Lennon, D. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Liu, R.

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009).
[CrossRef]

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
[CrossRef]

Llobera, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

Lu, B.

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

Lu, B.-R.

S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009).
[CrossRef]

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
[CrossRef]

Lyszczarz, T. M.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Maikisch, J. S.

Mayora, K.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
[CrossRef]

Mayr, T.

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

Meindl, J. D.

B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Pack. 33, 79–87 (2010).
[CrossRef]

B. Dang, M. S. Bakir, and J. D. Meindl, “Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink,” IEEE Electron Device Lett. 27, 117–119 (2006).
[CrossRef]

Moharam, M. G.

Montoya, A.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

Moore, J. L.

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999).
[CrossRef]

Moreno, M.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Ou, J.

J. Ou, T. Glawdel, C. L. Ren, and J. Pawliszyn, “Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins,” Lab Chip 9, 1926–1932 (2009).
[CrossRef]

Pawliszyn, J.

J. Ou, T. Glawdel, C. L. Ren, and J. Pawliszyn, “Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins,” Lab Chip 9, 1926–1932 (2009).
[CrossRef]

Prieto, F.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

Qu, X.-P.

S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009).
[CrossRef]

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
[CrossRef]

Ramaswamy, V.

Ren, C. L.

J. Ou, T. Glawdel, C. L. Ren, and J. Pawliszyn, “Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins,” Lab Chip 9, 1926–1932 (2009).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Schacht, E.

Scheerlinck, S.

P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007).
[CrossRef]

Schneider, B. H.

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999).
[CrossRef]

Schulein, R. T.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Sekar, D. C.

B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Pack. 33, 79–87 (2010).
[CrossRef]

Sepulveda, B.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
[CrossRef]

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

Shew, B. Y.

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sensor. Actuat. A-Phys. 141, 299–306 (2008).
[CrossRef]

Shu, Z.

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Spector, S. J.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Sun, Y.

S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009).
[CrossRef]

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
[CrossRef]

Taillaert, D.

P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007).
[CrossRef]

Tsai, Y. H.

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sensor. Actuat. A-Phys. 141, 299–306 (2008).
[CrossRef]

Tsuji, Y.

M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009).
[CrossRef]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

Venugopal, M. G.

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999).
[CrossRef]

Wan, J.

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
[CrossRef]

Wilkinson, J. S.

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensor. Actuat. B-Chem. 29, 261–267 (1995).
[CrossRef]

Wu, S.-D.

Xie, S.-Q.

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009).
[CrossRef]

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
[CrossRef]

Yanagisawa, M.

M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009).
[CrossRef]

Yang, R.

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

Yoon, J. U.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

Yoshinaga, H.

M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009).
[CrossRef]

Zinoviev, K.

L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009).
[CrossRef]

Appl. Opt.

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE Electron Device Lett.

B. Dang, M. S. Bakir, and J. D. Meindl, “Integrated thermal-fluidic I/O interconnects for an on-chip microchannel heat sink,” IEEE Electron Device Lett. 27, 117–119 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron. 16, 654–661 (2010).
[CrossRef]

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron. 12, 134–142 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

M. W. Geis, S. J. Spector, M. E. Grein, R. T. Schulein, J. U. Yoon, D. M. Lennon, S. Deneault, F. Gan, F. X. Kaertner, and T. M. Lyszczarz, “CMOS-compatible all-Si high-speed waveguide photodiodes with high responsivity in near-infrared communication band,” IEEE Photon. Technol. Lett. 19, 152–154 (2007).
[CrossRef]

IEEE Trans. Adv. Pack.

B. Dang, M. S. Bakir, D. C. Sekar, C. R. King, and J. D. Meindl, “Integrated microfluidic cooling and interconnects for 2D and 3D chips,” IEEE Trans. Adv. Pack. 33, 79–87 (2010).
[CrossRef]

Int. J. Nanosci. Ser.

B. Lu, S.-Q. Xie, J. Wan, R. Yang, Z. Shu, X.-P. Qu, R. Liu, Y. Chen, and E. Huq, “Applications of nanoimprint lithography for biochemical and nanophotonic structures using SU-8,” Int. J. Nanosci. Ser. 8, 151–155 (2009).
[CrossRef]

J. Nanosci. Nanotechnol.

S.-Q. Xie, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “Fabrication of 150 nm half-pitch grating templates for nanoimprint lithography,” J. Nanosci. Nanotechnol. 9, 1437–1440 (2009).
[CrossRef]

J. Opt. A-Pure Appl. Op.

B. Sepulveda, J. S. del Rio, M. Moreno, F. J. Blanco, K. Mayora, C. Dominguez, and L. M. Lechuga, “Optical biosensor microsystems based on the integration of highly sensitive Mach-Zehnder interferometer devices,” J. Opt. A-Pure Appl. Op. 8, 561–566 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

M. Yanagisawa, Y. Tsuji, H. Yoshinaga, N. Kono, and K. Hiratsuka, “Evaluation of nanoimprint lithography as a fabrication process of phase-shifted diffraction gratings of distributed feedback laser diodes,” J. Vac. Sci. Technol. B 27, 2776–2780 (2009).
[CrossRef]

Lab Chip

J. Ou, T. Glawdel, C. L. Ren, and J. Pawliszyn, “Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins,” Lab Chip 9, 1926–1932 (2009).
[CrossRef]

Microelectron. Eng.

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85, 914–917 (2008).
[CrossRef]

Nanotech.

F. Prieto, B. Sepulveda, A. Calle, A. Llobera, C. Dominguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotech. 14, 907–912 (2003).
[CrossRef]

Opt. Express

Proc. SPIE

J. Flueckiger, S. M. Grist, G. Bisra, L. Chrostowski, and K. C. Cheung, “Cascaded silicon-on-insulator microring resonators for the detection of biomolecules in PDMS microfluidic channels,” Proc. SPIE 7929, 79290I (2011).
[CrossRef]

D. P. Campbell, J. L. Moore, J. M. Cobb, N. F. Hartman, B. H. Schneider, and M. G. Venugopal, “Optical system-on-a-chip for chemical and biochemical sensing: the chemistry,” Proc. SPIE 3540, 153–161 (1999).
[CrossRef]

L. M. Lechuga, K. Zinoviev, L. Fernandez, J. Elizalde, O. E. Hidalgo, and C. Dominguez, “Biosensing microsystem platforms based on the integration of Si Mach-Zehnder interferometer, microfluidics and grating couplers,” Proc. SPIE 7220, 72200L (2009).
[CrossRef]

P. Debackere, D. Taillaert, K. De Vos, S. Scheerlinck, P. Bienstman, and R. Baets, “Si based waveguide and surface plasmon sensors,” Proc. SPIE 6477, 647719 (2007).
[CrossRef]

J. R. Krenn, N. Galler, H. Ditlbacher, A. Hohenau, B. Lamprecht, E. Kraker, G. Jakopic, and T. Mayr, “Waveguide-integrated SPR sensing on an all-organic platform,” Proc. SPIE 8073, 80730F (2011).
[CrossRef]

Sensor. Actuat. A-Phys.

B. Y. Shew, Y. C. Cheng, and Y. H. Tsai, “Monolithic SU-8 micro-interferometer for biochemical detections,” Sensor. Actuat. A-Phys. 141, 299–306 (2008).
[CrossRef]

Sensor. Actuat. B-Chem.

R. D. Harris and J. S. Wilkinson, “Waveguide surface plasmon resonance sensors,” Sensor. Actuat. B-Chem. 29, 261–267 (1995).
[CrossRef]

P. Adam, J. Dostalek, and J. Homola, “Multiple surface plasmon spectroscopy for study of biomolecular systems,” Sensor. Actuat. B-Chem. 113, 774–781 (2006).
[CrossRef]

L. U. Kempen and R. E. Kunz, “Replicated Mach-Zehnder interferometers with focusing grating couplers for sensing applications,” Sensor. Actuat. B-Chem. 39, 295–299 (1997).
[CrossRef]

Other

J. Homola, Surface Plasmon Resonance Based Sensors, Springer Series on Chemical Sensors and Biosensors(Springer, 2006), Vol. 4.

MicroChem Corp., Newton, Mass., www.microchem.com .

Soitec, Bernin, France, www.soitec.com .

P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (Ghent University, 2001).

Zeon Chemicals L. P., Louisville, Ky., www.zeonchemicals.com .

D. K. Brown, “Nanometer scale Bosch process silicon etching,” presented at IEEE Electron Ion Photon Beam and Nanofabrication Conference, Anchorage, Alaska, June 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

CSDS platform operation and structure. (1) Source light is incident upon the primary grating. (2) Partial transmission to a monitor photodiode or an additional sensor element. (3) Diffraction toward the secondary grating at an angle dependent on analyte immobilization. (4) Measured diffraction and transmission at the secondary grating.

Fig. 2.
Fig. 2.

Compact 2D CSDS sensor array. In each linear array of sensors, the primary grating diffraction efficiencies are 20%, 25%, 33%, and 50%, respectively. This provides 20% of the source power in each linear sequence to the secondary gratings. Monitor photodiodes are included at the end of each sensor sequence to increase device robustness.

Fig. 3.
Fig. 3.

Bounded primary grating configuration. Grating parameters include the thickness, d, period,Λ, and fill factor, F. The incident and diffracted angles outside the bounded area are θ and θm. The boundary orientation angles are α and αm. The refractive index within the boundary is n0 and the surrounding refractive index is n1. The grating ridge and groove indices are nr and ng. Forward diffracted and transmitted orders are DE3,1 and DE3,0 Backward diffracted and reflected orders are DE1,1 and DE1,0.

Fig. 4.
Fig. 4.

Angular sensitivity of the secondary grating simulated with RCWA (plane-wave incidence) and FDTD (Gaussian incidence). The desired linear, monotonic behavior is achieved about the incident angle θ=45° Backward orders, DE1,1 and DE1,0, are negligible.

Fig. 5.
Fig. 5.

Scanning electron microscope image of a fabricated secondary grating crosssection. The nanoscale ICP Bosch process used achieves nearly vertical sidewalls and feature sizes within 1% of target values.

Fig. 6.
Fig. 6.

Experimental configuration for grating and sensor characterization. Polarization-controlled monochromatic light is coupled to the sample by tapered fiber. After diffraction by the element under test, light is coupled out-of-plane by out-coupling gratings. It is then imaged by a microscope objective to an infrared camera for measurement.

Fig. 7.
Fig. 7.

Fabricated primary grating experimental configuration and measurement for the 50% primary grating with the n=1.432 refractive index oil within the grating boundary.

Fig. 8.
Fig. 8.

Experimental results compared with FDTD simulation with Gaussian incidence for the 50% primary grating refractive index response (top), secondary grating angular sensitivity (middle), and sensor (with the 50% primary grating) refractive index response (bottom). For the primary grating and sensor responses, refractive index oils ranging from n=1.432 to n=1.511 were flowed into the primary grating boundary. For the secondary grating, several gratings are fabricated with input waveguides that provide incident angles ranging from θ=43° to θ=47°. The diffraction efficiencies are in good agreement with simulation.

Fig. 9.
Fig. 9.

Fabricated experimental configuration to characterize the CSDS sensor.

Tables (1)

Tables Icon

Table 1. Designs for Primary and Secondary Gratings Simulated with RCWA (Plane-Wave Incidence) and FDTD (Gaussian Incidence) Analyses

Metrics