Abstract

Lossy mode resonances can be obtained in the transmission spectrum of cladding removed multimode optical fiber coated with a thin-film. The sensitivity of these devices to changes in the properties of the coating or the surrounding medium can be optimized by means of the adequate parameterization of the coating refractive index, the coating thickness, and the surrounding medium refractive index. Some basic rules of design, which enable the selection of the best parameters for each specific sensing application, are indicated in this work.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
    [CrossRef]
  2. C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B Chem. 146, 414–417 (2010).
    [CrossRef]
  3. M. Hernaez, I. Del Villar, C. M. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49, 3980–3985 (2010).
    [CrossRef]
  4. I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
    [CrossRef]
  5. C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155, 290–297 (2011).
    [CrossRef]
  6. T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18, 782–788 (1982).
    [CrossRef]
  7. M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer” IEE Proc. J, Optoelectron. 140, 247–252 (1993).
    [CrossRef]
  8. D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
    [CrossRef]
  9. F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
    [CrossRef]
  10. A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245, 159–169 (2005).
    [CrossRef]
  11. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
    [CrossRef]
  12. R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
    [CrossRef]
  13. G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
    [CrossRef]
  14. Y. Xu, N. Barrie Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre optic sensors,” J. Mod. Opt. 47, 1099–1110 (2000).
    [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  16. R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films 313–314, 394–397 (1998).
    [CrossRef]

2011 (1)

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155, 290–297 (2011).
[CrossRef]

2010 (4)

I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[CrossRef]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B Chem. 146, 414–417 (2010).
[CrossRef]

I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
[CrossRef]

M. Hernaez, I. Del Villar, C. M. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49, 3980–3985 (2010).
[CrossRef]

2005 (2)

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[CrossRef]

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245, 159–169 (2005).
[CrossRef]

2002 (1)

R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
[CrossRef]

2000 (1)

Y. Xu, N. Barrie Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre optic sensors,” J. Mod. Opt. 47, 1099–1110 (2000).
[CrossRef]

1998 (1)

R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films 313–314, 394–397 (1998).
[CrossRef]

1997 (2)

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
[CrossRef]

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
[CrossRef]

1993 (2)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer” IEE Proc. J, Optoelectron. 140, 247–252 (1993).
[CrossRef]

1982 (1)

T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18, 782–788 (1982).
[CrossRef]

Adam, D. R.

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Arregui, F. J.

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155, 290–297 (2011).
[CrossRef]

I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[CrossRef]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B Chem. 146, 414–417 (2010).
[CrossRef]

I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
[CrossRef]

M. Hernaez, I. Del Villar, C. M. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49, 3980–3985 (2010).
[CrossRef]

Barrie Jones, N.

Y. Xu, N. Barrie Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre optic sensors,” J. Mod. Opt. 47, 1099–1110 (2000).
[CrossRef]

Batchman, T. E.

T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18, 782–788 (1982).
[CrossRef]

Decher, G.

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
[CrossRef]

Del Villar, I.

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155, 290–297 (2011).
[CrossRef]

I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[CrossRef]

M. Hernaez, I. Del Villar, C. M. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49, 3980–3985 (2010).
[CrossRef]

I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
[CrossRef]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B Chem. 146, 414–417 (2010).
[CrossRef]

Einziger, P. D.

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[CrossRef]

Fothergill, J. C.

Y. Xu, N. Barrie Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre optic sensors,” J. Mod. Opt. 47, 1099–1110 (2000).
[CrossRef]

Grzegorzewski, J.

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer” IEE Proc. J, Optoelectron. 140, 247–252 (1993).
[CrossRef]

Gupta, B. D.

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245, 159–169 (2005).
[CrossRef]

Hanning, C. D.

Y. Xu, N. Barrie Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre optic sensors,” J. Mod. Opt. 47, 1099–1110 (2000).
[CrossRef]

Hernaez, M.

Hernáez, M.

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155, 290–297 (2011).
[CrossRef]

I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[CrossRef]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B Chem. 146, 414–417 (2010).
[CrossRef]

Ide, M.

R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Marciniak, M.

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer” IEE Proc. J, Optoelectron. 140, 247–252 (1993).
[CrossRef]

Matias, I. R.

Matías, I. R.

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155, 290–297 (2011).
[CrossRef]

I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[CrossRef]

McWright, G. M.

T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18, 782–788 (1982).
[CrossRef]

Nishide, T.

R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
[CrossRef]

Ogawa, M.

R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
[CrossRef]

Ota, R.

R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
[CrossRef]

Razansky, D.

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[CrossRef]

Sambles, J. R.

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
[CrossRef]

Sánchez, P.

I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[CrossRef]

Sawada, Y.

R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
[CrossRef]

Seki, S.

R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
[CrossRef]

Sharma, A. K.

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245, 159–169 (2005).
[CrossRef]

Shida, A.

R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
[CrossRef]

Synowicki, R. A.

R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films 313–314, 394–397 (1998).
[CrossRef]

Szustakowski, M.

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer” IEE Proc. J, Optoelectron. 140, 247–252 (1993).
[CrossRef]

Valdivielso, Carlos F.

I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[CrossRef]

Xu, Y.

Y. Xu, N. Barrie Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre optic sensors,” J. Mod. Opt. 47, 1099–1110 (2000).
[CrossRef]

Yang, F.

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
[CrossRef]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Zamarreño, C. M.

Zamarreño, C. R.

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155, 290–297 (2011).
[CrossRef]

I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[CrossRef]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B Chem. 146, 414–417 (2010).
[CrossRef]

I. Del Villar, C. R. Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28, 111–117 (2010).
[CrossRef]

Appl. Opt. (1)

IEE Proc. J, Optoelectron. (1)

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer” IEE Proc. J, Optoelectron. 140, 247–252 (1993).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. E. Batchman and G. M. McWright, “Mode coupling between dielectric and semiconductor planar waveguides,” IEEE J. Quantum Electron. 18, 782–788 (1982).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (2)

Y. Xu, N. Barrie Jones, J. C. Fothergill, and C. D. Hanning, “Analytical estimates of the characteristics of surface plasmon resonance fibre optic sensors,” J. Mod. Opt. 47, 1099–1110 (2000).
[CrossRef]

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44, 1155–1163 (1997).
[CrossRef]

J. Opt. (1)

I. Del Villar, C. R. Zamarreño, M. Hernáez, P. Sánchez, Carlos F. Valdivielso, F. J. Arregui, and I. R. Matías, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12, 095503 (2010).
[CrossRef]

Opt. Commun. (1)

A. K. Sharma and B. D. Gupta, “On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers,” Opt. Commun. 245, 159–169 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

D. Razansky, P. D. Einziger, and D. R. Adam, “Broadband absorption spectroscopy via excitation of lossy resonance modes in thin films,” Phys. Rev. Lett. 95, 018101 (2005).
[CrossRef]

Science (1)

G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science 277, 1232–1237 (1997).
[CrossRef]

Sens. Actuators B (2)

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matías, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155, 290–297 (2011).
[CrossRef]

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Sens. Actuators B Chem. (1)

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B Chem. 146, 414–417 (2010).
[CrossRef]

Thin Solid Films (2)

R. A. Synowicki, “Spectroscopic ellipsometry characterization of indium tin oxide film microstructure and optical constants,” Thin Solid Films 313–314, 394–397 (1998).
[CrossRef]

R. Ota, S. Seki, M. Ogawa, T. Nishide, A. Shida, M. Ide, and Y. Sawada, “Fabrication of indium-tin-oxide films by dip coating process using ethanol solution of chlorides and surfactants,” Thin Solid Films 411, 42–45 (2002).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1.
Fig. 1.

SEM image of (a) TiO2/PSS coated optical fiber core with coating thickness 1200 nm; (b) PAH/PAA coated optical fiber core with coating thickness 1000 nm.

Fig. 2.
Fig. 2.

Experimental setup with the light source, the detector, and the optical fiber with the coated region.

Fig. 3.
Fig. 3.

Refractive index dispersion curves of TiO2/PSS and PAH/PAA.

Fig. 4.
Fig. 4.

Spectral response obtained as a function of thickness for TiO2/PSS coated CRMOF (the surrounding medium refractive index is 1.321): (a) theoretical, (b) experimental.

Fig. 5.
Fig. 5.

Spectral response obtained as a function of thickness for PAH/PAA coated CRMOF (the surrounding medium refractive index is 1.321): (a) theoretical, (b) experimental.

Fig. 6.
Fig. 6.

Transmission spectra for two different thickness values (333 and 1165 nm) of TiO2/PSS coated CRMOF (the surrounding medium refractive index is 1.321): (a) theoretical, (b) experimental.

Fig. 7.
Fig. 7.

Transmission spectra for two different thickness values (750 and 1200 nm) of PAH/PAA coated CRMOF (the surrounding medium refractive index is 1.321): (a) theoretical, (b) experimental.

Fig. 8.
Fig. 8.

LMR wavelength as a function of coating thickness for two different materials: PAH/PAA and TiO2/PSS. The SMRI is 1.321 (water). Simulation data, continuous line; experimental data, squares.

Fig. 9.
Fig. 9.

Sthickness (sensitivity to variations of coating thickness expressed as wavelength shift versus thickness variation nm/nm) as a function of (a) coating refractive index (the SMRI is 1.321) and (b) SMRI (the coating refractive index is that of TiO2/PSS in Fig. 3).

Fig. 10.
Fig. 10.

LMR wavelength as a function of coating thickness for two different surrounding medium refractive indices: 1.321 (water) and 1.421. Coating refractive index: TiO2/PSS in Fig. 3.

Fig. 11.
Fig. 11.

Transmission spectra for different refractive indices. The real part is that of TiO2/PSS. The imaginary part varies from 0.004 to 0.04 in steps of 0.004. The SMRI is 1.321 (water). Coating thickness: 333 nm.

Fig. 12.
Fig. 12.

LMR wavelength as a function of the coating refractive index for two different coating thickness values: 236 and 1200 nm. The SMRI is 1.321 (water).

Fig. 13.
Fig. 13.

Scoating_index (sensitivity to variations of coating refractive index expressed as wavelength shift versus refractive index nm/RIU) as a function of (a) coating thickness (the SMRI is 1.321) and (b) SMRI (the coating thickness is 600 nm).

Fig. 14.
Fig. 14.

LMR wavelength as a function of coating refractive index for two different surrounding medium refractive indices: 1.321 (water) and 1.421. Coating thickness: 600 nm.

Fig. 15.
Fig. 15.

LMR wavelength as a function of the SMRI for two different coating thickness values: 48 and 1200 nm. Coating refractive index: TiO2/PSS in Fig. 3.

Fig. 16.
Fig. 16.

SSMRI (sensitivity to variations of SMRI expressed as wavelength shift versus refractive index variation nm/RIU) as a function of (a) coating thickness (the coating refractive index is that of TiO2/PSS in Fig. 3) and (b) coating refractive index (the coating thickness is 600 nm).

Fig. 17.
Fig. 17.

LMR wavelength as a function of the SMRI for two different coating refractive indices: 1.55 and 2. Coating thickness: 600 nm.

Tables (1)

Tables Icon

Table 1. Rules for Sensitivity, Expressed as Wavelength Shift Versus Variation of a Parameter, for the Different Parameters Analyzed in This Worka

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(λ)=θc90°p(θ)RN(θ)(θ,λ)dθθc90°p(θ),
n2(ω)=1+j=1mBjωj2ωj2ω2.
ε(E)=ε+kAkEk2E2iBkE,

Metrics