Abstract

There is an increasing demand for transdermal high-data-rate communication for use with in-body devices, such as pacemakers, smart prostheses, neural signals processors at the brain interface, and cameras acting as artificial eyes as well as for collecting signals generated within the human body. Prominent requirements of these communication systems include (1) wireless modality, (2) noise immunity and (3) ultra-low-power consumption for the in-body device. Today, the common wireless methods for transdermal communication are based on communication at radio frequencies, electrical induction, or acoustic waves. In this paper, we will explore another alternative to these methods—optical wireless communication (OWC)—for which modulated light carries the information. The main advantages of OWC in transdermal communication, by comparison to the other methods, are the high data rates and immunity to external interference availed, which combine to make it a promising technology for next-generation systems. In this paper, we present a mathematical model and experimental results of measurements from direct link and retroreflection link configurations with Gallus gallus domesticus derma as the transdermal channel. The main conclusion from this work is that an OWC link is an attractive communication solution in medical applications. For a modulating retroreflective link to become a competitive solution in comparison with a direct link, low-energy-consumption modulating retroreflectors should be developed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis, “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex,” Nature 2, 664–670 (1999).
    [CrossRef]
  2. M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brainmachine interface: instant neural control of a movement signal,” Nature 416, 141–142 (2002).
    [CrossRef]
  3. B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
    [CrossRef]
  4. M. Ghovanloo and K. Najafi, “A wideband frequency-shift keying wireless link for inductively powered biomedical implants,” IEEE Trans. Circuits Syst. I 51, 2374–2383 (2004).
    [CrossRef]
  5. D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. 42, S2–S7 (2004).
    [CrossRef]
  6. X. Zhou, V. S. Hsu, and J. M. Kahn, “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE J. Sel. Top. Quantum Electron. 8, 26–32(2002).
    [CrossRef]
  7. T. K. Chan and J. E. Ford, “Retroreflecting optical modulator using an MEMS deformable micromirror array,” J. Lightwave Technol. 24, 516–525 (2006).
    [CrossRef]
  8. J. L. Abita and W. Schneider, “Transdermal optical communications,” Johns Hopkins APL Tech. Dig. 25, 261–268 (2004).
  9. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human derma and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
    [CrossRef]
  10. D. M. Ackermann, B. Smith, X.-F. Wang, K. L. Kilgore, and P. Hunter Peckham, “Designing the optical interface of a transcutaneous optical telemetry link,” IEEE Trans. Biomed. Eng. 55, 1365–1373 (2008).
    [CrossRef]
  11. W. Rabinovich, “Optical modulating retro-reflectors,” in Advanced Optical Wireless Communication SystemsS. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, eds. (Cambridge University, 2012), pp. 328–347.
  12. C. Rivera, J. F. Cabrero, P. Munuera, and F. Aragon, “GaN-based technology for MQW modulating retro-reflectors operating in the visible and ultraviolet spectral ranges,” in Space Optical Systems and Applications (ICSOS), 2011, International Conference (IEEE, 2011), pp. 239–244.
    [CrossRef]
  13. S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49, 015001 (2010).
    [CrossRef]
  14. Laser Institute of America, the ANSI Z136 Series of Laser Safety Standards.

2010 (1)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49, 015001 (2010).
[CrossRef]

2008 (1)

D. M. Ackermann, B. Smith, X.-F. Wang, K. L. Kilgore, and P. Hunter Peckham, “Designing the optical interface of a transcutaneous optical telemetry link,” IEEE Trans. Biomed. Eng. 55, 1365–1373 (2008).
[CrossRef]

2006 (1)

2004 (3)

J. L. Abita and W. Schneider, “Transdermal optical communications,” Johns Hopkins APL Tech. Dig. 25, 261–268 (2004).

M. Ghovanloo and K. Najafi, “A wideband frequency-shift keying wireless link for inductively powered biomedical implants,” IEEE Trans. Circuits Syst. I 51, 2374–2383 (2004).
[CrossRef]

D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. 42, S2–S7 (2004).
[CrossRef]

2002 (2)

X. Zhou, V. S. Hsu, and J. M. Kahn, “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE J. Sel. Top. Quantum Electron. 8, 26–32(2002).
[CrossRef]

M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brainmachine interface: instant neural control of a movement signal,” Nature 416, 141–142 (2002).
[CrossRef]

1999 (1)

J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis, “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex,” Nature 2, 664–670 (1999).
[CrossRef]

1998 (2)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human derma and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
[CrossRef]

Abita, J. L.

J. L. Abita and W. Schneider, “Transdermal optical communications,” Johns Hopkins APL Tech. Dig. 25, 261–268 (2004).

Ackermann, D. M.

D. M. Ackermann, B. Smith, X.-F. Wang, K. L. Kilgore, and P. Hunter Peckham, “Designing the optical interface of a transcutaneous optical telemetry link,” IEEE Trans. Biomed. Eng. 55, 1365–1373 (2008).
[CrossRef]

Aragon, F.

C. Rivera, J. F. Cabrero, P. Munuera, and F. Aragon, “GaN-based technology for MQW modulating retro-reflectors operating in the visible and ultraviolet spectral ranges,” in Space Optical Systems and Applications (ICSOS), 2011, International Conference (IEEE, 2011), pp. 239–244.
[CrossRef]

Arnon, S.

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49, 015001 (2010).
[CrossRef]

D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. 42, S2–S7 (2004).
[CrossRef]

Buckett, J. R.

B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
[CrossRef]

Cabrero, J. F.

C. Rivera, J. F. Cabrero, P. Munuera, and F. Aragon, “GaN-based technology for MQW modulating retro-reflectors operating in the visible and ultraviolet spectral ranges,” in Space Optical Systems and Applications (ICSOS), 2011, International Conference (IEEE, 2011), pp. 239–244.
[CrossRef]

Chan, T. K.

Chapin, J. K.

J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis, “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex,” Nature 2, 664–670 (1999).
[CrossRef]

Cope, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human derma and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

Donoghue, J. P.

M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brainmachine interface: instant neural control of a movement signal,” Nature 416, 141–142 (2002).
[CrossRef]

Essenpreis, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human derma and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

Fellows, M. R.

M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brainmachine interface: instant neural control of a movement signal,” Nature 416, 141–142 (2002).
[CrossRef]

Ford, J. E.

Gazdik, M. M.

B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
[CrossRef]

Ghovanloo, M.

M. Ghovanloo and K. Najafi, “A wideband frequency-shift keying wireless link for inductively powered biomedical implants,” IEEE Trans. Circuits Syst. I 51, 2374–2383 (2004).
[CrossRef]

Hatsopoulos, N. G.

M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brainmachine interface: instant neural control of a movement signal,” Nature 416, 141–142 (2002).
[CrossRef]

Hsu, V. S.

X. Zhou, V. S. Hsu, and J. M. Kahn, “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE J. Sel. Top. Quantum Electron. 8, 26–32(2002).
[CrossRef]

Hunter Peckham, P.

D. M. Ackermann, B. Smith, X.-F. Wang, K. L. Kilgore, and P. Hunter Peckham, “Designing the optical interface of a transcutaneous optical telemetry link,” IEEE Trans. Biomed. Eng. 55, 1365–1373 (2008).
[CrossRef]

Johnson, M. W.

B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
[CrossRef]

Kahn, J. M.

X. Zhou, V. S. Hsu, and J. M. Kahn, “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE J. Sel. Top. Quantum Electron. 8, 26–32(2002).
[CrossRef]

Kedar, D.

D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. 42, S2–S7 (2004).
[CrossRef]

Kilgore, K. L.

D. M. Ackermann, B. Smith, X.-F. Wang, K. L. Kilgore, and P. Hunter Peckham, “Designing the optical interface of a transcutaneous optical telemetry link,” IEEE Trans. Biomed. Eng. 55, 1365–1373 (2008).
[CrossRef]

Kohl, M.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human derma and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

Markowitz, R. S.

J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis, “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex,” Nature 2, 664–670 (1999).
[CrossRef]

Moxon, K. A.

J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis, “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex,” Nature 2, 664–670 (1999).
[CrossRef]

Munuera, P.

C. Rivera, J. F. Cabrero, P. Munuera, and F. Aragon, “GaN-based technology for MQW modulating retro-reflectors operating in the visible and ultraviolet spectral ranges,” in Space Optical Systems and Applications (ICSOS), 2011, International Conference (IEEE, 2011), pp. 239–244.
[CrossRef]

Najafi, K.

M. Ghovanloo and K. Najafi, “A wideband frequency-shift keying wireless link for inductively powered biomedical implants,” IEEE Trans. Circuits Syst. I 51, 2374–2383 (2004).
[CrossRef]

Nicolelis, M. A. L.

J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis, “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex,” Nature 2, 664–670 (1999).
[CrossRef]

Paninski, L.

M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brainmachine interface: instant neural control of a movement signal,” Nature 416, 141–142 (2002).
[CrossRef]

Peckham, P. H.

B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
[CrossRef]

Pourmehdi, S.

B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
[CrossRef]

Rabinovich, W.

W. Rabinovich, “Optical modulating retro-reflectors,” in Advanced Optical Wireless Communication SystemsS. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, eds. (Cambridge University, 2012), pp. 328–347.

Rivera, C.

C. Rivera, J. F. Cabrero, P. Munuera, and F. Aragon, “GaN-based technology for MQW modulating retro-reflectors operating in the visible and ultraviolet spectral ranges,” in Space Optical Systems and Applications (ICSOS), 2011, International Conference (IEEE, 2011), pp. 239–244.
[CrossRef]

Schneider, W.

J. L. Abita and W. Schneider, “Transdermal optical communications,” Johns Hopkins APL Tech. Dig. 25, 261–268 (2004).

Serruya, M. D.

M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brainmachine interface: instant neural control of a movement signal,” Nature 416, 141–142 (2002).
[CrossRef]

Simpson, C. R.

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human derma and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

Smith, B.

D. M. Ackermann, B. Smith, X.-F. Wang, K. L. Kilgore, and P. Hunter Peckham, “Designing the optical interface of a transcutaneous optical telemetry link,” IEEE Trans. Biomed. Eng. 55, 1365–1373 (2008).
[CrossRef]

B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
[CrossRef]

Tang, Z.

B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
[CrossRef]

Wang, X.-F.

D. M. Ackermann, B. Smith, X.-F. Wang, K. L. Kilgore, and P. Hunter Peckham, “Designing the optical interface of a transcutaneous optical telemetry link,” IEEE Trans. Biomed. Eng. 55, 1365–1373 (2008).
[CrossRef]

Zhou, X.

X. Zhou, V. S. Hsu, and J. M. Kahn, “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE J. Sel. Top. Quantum Electron. 8, 26–32(2002).
[CrossRef]

IEEE Commun. (1)

D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Commun. 42, S2–S7 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Zhou, V. S. Hsu, and J. M. Kahn, “Optical modeling of MEMS corner cube retroreflectors with misalignment and nonflatness,” IEEE J. Sel. Top. Quantum Electron. 8, 26–32(2002).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

B. Smith, Z. Tang, M. W. Johnson, S. Pourmehdi, M. M. Gazdik, J. R. Buckett, and P. H. Peckham, “An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle,” IEEE Trans. Biomed. Eng. 45, 463–475(1998).
[CrossRef]

D. M. Ackermann, B. Smith, X.-F. Wang, K. L. Kilgore, and P. Hunter Peckham, “Designing the optical interface of a transcutaneous optical telemetry link,” IEEE Trans. Biomed. Eng. 55, 1365–1373 (2008).
[CrossRef]

IEEE Trans. Circuits Syst. I (1)

M. Ghovanloo and K. Najafi, “A wideband frequency-shift keying wireless link for inductively powered biomedical implants,” IEEE Trans. Circuits Syst. I 51, 2374–2383 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Johns Hopkins APL Tech. Dig. (1)

J. L. Abita and W. Schneider, “Transdermal optical communications,” Johns Hopkins APL Tech. Dig. 25, 261–268 (2004).

Nature (2)

J. K. Chapin, K. A. Moxon, R. S. Markowitz, and M. A. L. Nicolelis, “Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex,” Nature 2, 664–670 (1999).
[CrossRef]

M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and J. P. Donoghue, “Brainmachine interface: instant neural control of a movement signal,” Nature 416, 141–142 (2002).
[CrossRef]

Opt. Eng. (1)

S. Arnon, “Underwater optical wireless communication network,” Opt. Eng. 49, 015001 (2010).
[CrossRef]

Phys. Med. Biol. (1)

C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human derma and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465–2478 (1998).
[CrossRef]

Other (3)

Laser Institute of America, the ANSI Z136 Series of Laser Safety Standards.

W. Rabinovich, “Optical modulating retro-reflectors,” in Advanced Optical Wireless Communication SystemsS. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, eds. (Cambridge University, 2012), pp. 328–347.

C. Rivera, J. F. Cabrero, P. Munuera, and F. Aragon, “GaN-based technology for MQW modulating retro-reflectors operating in the visible and ultraviolet spectral ranges,” in Space Optical Systems and Applications (ICSOS), 2011, International Conference (IEEE, 2011), pp. 239–244.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Diagram of the direct link configuration.

Fig. 2.
Fig. 2.

Diagram of the retroreflection link configuration.

Fig. 3.
Fig. 3.

Schematic of experimental apparatus.

Fig. 4.
Fig. 4.

Photograph of Gallus gallus domesticus derma on sample holder.

Fig. 5.
Fig. 5.

Normalized power reception for direct link case.

Fig. 6.
Fig. 6.

Normalized power reception for retro link case.

Fig. 7.
Fig. 7.

Power transmitted through the derma as a function of BER.

Fig. 8.
Fig. 8.

Power consumption of the driver inside the body as a function of the BER.

Tables (2)

Tables Icon

Table 1. Details of the Experimental Setup

Tables Icon

Table 2. Simulation Parameters

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

PRetro=CV2f,
PRec_D=PT,
μ1=RPREC_D,
μ0=0.
σss12=2qRBPREC_D,
σss02=0.
σBG2=2qRBPBG,
σDC2=2qIDCB,
σ12=σSS12+σBG2+σTH2+σDC2,
σ02=σSS02+σBG2+σTH2+σDC2.
BER=Q(μ1μ0σ1+σ2),
Q(x)=12πxexp(u22)du.
PRec_RPCWT2AretroASηretro,
σBG_CW2=2qRB(PBG+PCW),
NRetroNDirect2+NReflected,
NRetroNDirect2.

Metrics