Abstract

Diode pumped zig-zag slab lasers are widely adopted for continuous-wave high power or pulsed high energy applications. Recently [J. Eur. Opt. Soc.-Rapid 6, 11041 (2011)] we started to investigate a new thin slab format in which pumping radiation input is obtained through the thin lateral faces (edge pumping) and the beam propagation takes place bouncing on these same lateral faces (“edge zig-zag”). We report on the optimized operation of a ceramic Nd:YAG laser, based on this geometry, extracting 230 W at a 43% output power to diode power conversion efficiency. Thorough investigation of the thermal lens effect allows us to analyze the optical cavity and thus to define the main aspects limiting the present laser configuration.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
    [CrossRef]
  2. See for example, Photonics.com , “Textron achieves over 100 kW with laser,” 22February2010.
  3. B. Bishop, “Northrop Grumman’s electric laser tops the 100 kW mark,” 18March2009, www.laserfocusworld.com .
  4. T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.
  5. W. S. Martin and J. P. Chernoch, “Multiple internal reflection face pumped laser,” U.S. patent 3,633,126 (4 January 1972).
  6. A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
    [CrossRef]
  7. G. D. Goodno, S. Palese, J. Harkenrider, and H. Injeyan, “Yb:YAG power oscillator with high brightness and linear polarization,” Opt. Lett. 26, 1672–1674 (2001).
    [CrossRef]
  8. R. J. Shine, A. J. Alfrey, and R. L. Byer, “40 W cw, TEM00-mode, diode-laser-pumped, Nd:YAG miniature-slab laser,” Opt. Lett. 20, 459–461 (1995).
    [CrossRef]
  9. T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron. 36, 205–219 (2000).
    [CrossRef]
  10. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, “Yb:YAG and Nd:YAG edge-pumped slab lasers,” Opt. Lett. 26, 986–988 (2001).
    [CrossRef]
  11. Y. Liao, K. Du, S. Falter, M. Quade, P. Loosen, and R. Poprawe, “Highly efficient diode-stack, end-pumped Nd:YAG slab laser with symmetrized beam quality,” Appl. Opt. 36, 5872–5875 (1997).
    [CrossRef]
  12. K. Du, N. Wu, J. Xu, J. Giesekus, P. Loosen, and R. Poprawe, “Partially end-pumped Nd:YAG slab laser with a hybrid resonator,” Opt. Lett. 23, 370–372 (1998).
    [CrossRef]
  13. C. Schnitzler, G. Smidt, M. Hoefer, D. Hoffmann, and R. Poprawe, “A 500 W high brightness diode end pumped Nd:YAG slab laser,” in Advanced Solid State Lasers Conference, Technical Digest (OSA, 2002), pp. 518–520.
  14. A. Lapucci, M. Ciofini, M. Pucci, and M. D’Uva, “High efficiency, diode pumped 170 W Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.-Rapid 6, 11041 (2011).
    [CrossRef]
  15. I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, 2nd ed.; D. Malacara, ed. (Wiley-Interscience, 1992), pp. 367–396.
  16. A. Agnesi, S. Dell’Acqua, G. C. Reali, P. G. Gobbi, and D. Ragazzi, “Design and characterization of a diode-pumped, single longitudinal and transverse mode, intracavity-doubled cw Nd:YAG laser,” Appl. Opt. 36, 597–601 (1997).
    [CrossRef]
  17. A. E. Siegman, “Generalized paraxial resonator theory,” in Lasers (University Science, 1986), pp. 815–857.
  18. A. Lapucci, A. Labate, F. Rossetti, and S. Mascalchi, “Hybrid stable-unstable resonators for diffusion-cooled CO2 slab lasers,” Appl. Opt. 35, 3185–3192 (1996).
    [CrossRef]
  19. A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable-unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
    [CrossRef]
  20. C. H. Hill, “Theory of waveguide laser resonators,” in The Physics and Technology of Laser Resonators; D. R. Hall and P. E. Jackson, eds. (Adam Hilger, 1989), pp. 40–61.
  21. M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227 (2000).
    [CrossRef]
  22. M. W. Sasnett, “Propagation of multimode laser beams—The M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall and P. E. Jackson, eds. (Adam Hilger, 1989), pp. 132–142.
  23. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2005), p. 232.
  24. M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable-unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
    [CrossRef]

2011

A. Lapucci, M. Ciofini, M. Pucci, and M. D’Uva, “High efficiency, diode pumped 170 W Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.-Rapid 6, 11041 (2011).
[CrossRef]

A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable-unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
[CrossRef]

2007

A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
[CrossRef]

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable-unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[CrossRef]

2001

2000

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron. 36, 205–219 (2000).
[CrossRef]

M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227 (2000).
[CrossRef]

1998

1997

1996

1995

Agnesi, A.

Alfrey, A. J.

Ashizuka, T.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Byer, R. L.

Chernoch, J. P.

W. S. Martin and J. P. Chernoch, “Multiple internal reflection face pumped laser,” U.S. patent 3,633,126 (4 January 1972).

Ciofini, M.

A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable-unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
[CrossRef]

A. Lapucci, M. Ciofini, M. Pucci, and M. D’Uva, “High efficiency, diode pumped 170 W Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.-Rapid 6, 11041 (2011).
[CrossRef]

A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
[CrossRef]

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable-unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[CrossRef]

M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227 (2000).
[CrossRef]

D’Uva, M.

A. Lapucci, M. Ciofini, M. Pucci, and M. D’Uva, “High efficiency, diode pumped 170 W Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.-Rapid 6, 11041 (2011).
[CrossRef]

De Rosa, M.

A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
[CrossRef]

Dell’Acqua, S.

Du, K.

Falter, S.

Favilla, E.

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable-unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[CrossRef]

A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
[CrossRef]

Fukumoto, Y.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Furukawa, H.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Ghozeil, I.

I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, 2nd ed.; D. Malacara, ed. (Wiley-Interscience, 1992), pp. 367–396.

Giesekus, J.

Gobbi, P. G.

Goodno, G. D.

Gustafson, E. K.

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron. 36, 205–219 (2000).
[CrossRef]

Hamilton, M. W.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
[CrossRef]

Harkenrider, J.

Hill, C. H.

C. H. Hill, “Theory of waveguide laser resonators,” in The Physics and Technology of Laser Resonators; D. R. Hall and P. E. Jackson, eds. (Adam Hilger, 1989), pp. 40–61.

Hoefer, M.

C. Schnitzler, G. Smidt, M. Hoefer, D. Hoffmann, and R. Poprawe, “A 500 W high brightness diode end pumped Nd:YAG slab laser,” in Advanced Solid State Lasers Conference, Technical Digest (OSA, 2002), pp. 518–520.

Hoffmann, D.

C. Schnitzler, G. Smidt, M. Hoefer, D. Hoffmann, and R. Poprawe, “A 500 W high brightness diode end pumped Nd:YAG slab laser,” in Advanced Solid State Lasers Conference, Technical Digest (OSA, 2002), pp. 518–520.

Injeyan, H.

Izawa, Y.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Kan, H.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Kanabe, T.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Kanzaki, T.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Kawashima, T.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2005), p. 232.

Kurita, T.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Labate, A.

Lapucci, A.

A. Lapucci, M. Ciofini, M. Pucci, and M. D’Uva, “High efficiency, diode pumped 170 W Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.-Rapid 6, 11041 (2011).
[CrossRef]

A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable-unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
[CrossRef]

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable-unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[CrossRef]

A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
[CrossRef]

M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227 (2000).
[CrossRef]

A. Lapucci, A. Labate, F. Rossetti, and S. Mascalchi, “Hybrid stable-unstable resonators for diffusion-cooled CO2 slab lasers,” Appl. Opt. 35, 3185–3192 (1996).
[CrossRef]

Liao, Y.

Loosen, P.

Martin, W. S.

W. S. Martin and J. P. Chernoch, “Multiple internal reflection face pumped laser,” U.S. patent 3,633,126 (4 January 1972).

Mascalchi, S.

Matsumoto, O.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Matsuoka, S.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Middlemiss, B.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
[CrossRef]

Mincuzzi, G.

A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
[CrossRef]

Miyamoto, M.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Miyanaga, N.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Motokoshi, S.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Mudge, D.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
[CrossRef]

Munch, J.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
[CrossRef]

Nakai, S.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Nakano, H.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Nakatsuka, M.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Norimatsu, T.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Ostermeyer, M.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
[CrossRef]

Ottaway, D. J.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
[CrossRef]

Palese, S.

Poprawe, R.

Pucci, M.

A. Lapucci, M. Ciofini, M. Pucci, and M. D’Uva, “High efficiency, diode pumped 170 W Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.-Rapid 6, 11041 (2011).
[CrossRef]

Quade, M.

Ragazzi, D.

Reali, G. C.

Rocco, A. S. D.

A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
[CrossRef]

Rossetti, F.

Rutherford, T. S.

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, “Yb:YAG and Nd:YAG edge-pumped slab lasers,” Opt. Lett. 26, 986–988 (2001).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron. 36, 205–219 (2000).
[CrossRef]

Sani, E.

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable-unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[CrossRef]

A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
[CrossRef]

Sasnett, M. W.

M. W. Sasnett, “Propagation of multimode laser beams—The M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall and P. E. Jackson, eds. (Adam Hilger, 1989), pp. 132–142.

Schnitzler, C.

C. Schnitzler, G. Smidt, M. Hoefer, D. Hoffmann, and R. Poprawe, “A 500 W high brightness diode end pumped Nd:YAG slab laser,” in Advanced Solid State Lasers Conference, Technical Digest (OSA, 2002), pp. 518–520.

Sekine, T.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Shine, R. J.

Siegman, A. E.

A. E. Siegman, “Generalized paraxial resonator theory,” in Lasers (University Science, 1986), pp. 815–857.

Sinha, S.

Smidt, G.

C. Schnitzler, G. Smidt, M. Hoefer, D. Hoffmann, and R. Poprawe, “A 500 W high brightness diode end pumped Nd:YAG slab laser,” in Advanced Solid State Lasers Conference, Technical Digest (OSA, 2002), pp. 518–520.

Tulloch, W. M.

T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, “Yb:YAG and Nd:YAG edge-pumped slab lasers,” Opt. Lett. 26, 986–988 (2001).
[CrossRef]

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron. 36, 205–219 (2000).
[CrossRef]

Veitch, P. J.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
[CrossRef]

Wu, N.

Xu, J.

Yamanaka, C.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Yamanaka, M.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Yasuhara, R.

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

Appl. Opt.

IEEE J. Quantum Electron.

T. S. Rutherford, W. M. Tulloch, E. K. Gustafson, and R. L. Byer, “Edge-pumped quasi-three-level slab lasers: design and power scaling,” IEEE J. Quantum Electron. 36, 205–219 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. Mudge, M. Ostermeyer, P. J. Veitch, J. Munch, B. Middlemiss, D. J. Ottaway, and M. W. Hamilton, “Power scalable TEMoo cw Nd:YAG laser with thermal lens compensation,” IEEE J. Sel. Top. Quantum Electron. 6, 643–649, (2000).
[CrossRef]

J. Eur. Opt. Soc.- Rapid

A. Lapucci, M. Ciofini, E. Favilla, E. Sani, M. De Rosa, G. Mincuzzi, and A. S. D. Rocco, “Quantitative analysis of the thermal distortions in a 100 W CW Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.- Rapid 2, 07020 (2007).
[CrossRef]

J. Eur. Opt. Soc.-Rapid

A. Lapucci, M. Ciofini, M. Pucci, and M. D’Uva, “High efficiency, diode pumped 170 W Nd:YAG ceramic slab laser,” J. Eur. Opt. Soc.-Rapid 6, 11041 (2011).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

M. Ciofini and A. Lapucci, “Guided Talbot resonators for annular laser sources,” J. Opt. A: Pure Appl. Opt. 2, 223–227 (2000).
[CrossRef]

Opt. Commun.

A. Lapucci and M. Ciofini, “Numerical analysis of non-confocal configurations of a hybrid stable-unstable resonator,” Opt. Commun. 284, 999–1003 (2011).
[CrossRef]

Opt. Laser Technol.

M. Ciofini, E. Favilla, A. Lapucci, and E. Sani, “Propagation parameters of the beam extracted from a diode pumped Nd:YAG ceramic slab laser with a hybrid stable-unstable resonator,” Opt. Laser Technol. 39, 1380–1388 (2007).
[CrossRef]

Opt. Lett.

Other

A. E. Siegman, “Generalized paraxial resonator theory,” in Lasers (University Science, 1986), pp. 815–857.

C. H. Hill, “Theory of waveguide laser resonators,” in The Physics and Technology of Laser Resonators; D. R. Hall and P. E. Jackson, eds. (Adam Hilger, 1989), pp. 40–61.

M. W. Sasnett, “Propagation of multimode laser beams—The M2 factor,” in The Physics and Technology of Laser Resonators, D. R. Hall and P. E. Jackson, eds. (Adam Hilger, 1989), pp. 132–142.

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2005), p. 232.

I. Ghozeil, “Hartmann and other screen tests,” in Optical Shop Testing, 2nd ed.; D. Malacara, ed. (Wiley-Interscience, 1992), pp. 367–396.

C. Schnitzler, G. Smidt, M. Hoefer, D. Hoffmann, and R. Poprawe, “A 500 W high brightness diode end pumped Nd:YAG slab laser,” in Advanced Solid State Lasers Conference, Technical Digest (OSA, 2002), pp. 518–520.

See for example, Photonics.com , “Textron achieves over 100 kW with laser,” 22February2010.

B. Bishop, “Northrop Grumman’s electric laser tops the 100 kW mark,” 18March2009, www.laserfocusworld.com .

T. Kawashima, O. Matsumoto, M. Miyamoto, T. Sekine, T. Kurita, S. Matsuoka, T. Kanzaki, H. Kan, T. Kanabe, R. Yasuhara, Y. Fukumoto, T. Ashizuka, M. Yamanaka, T. Norimatsu, N. Miyanaga, M. Nakatsuka, Y. Izawa, H. Furukawa, S. Motokoshi, C. Yamanaka, H. Nakano, and S. Nakai, “Diode-pumped zig-zag slab laser for inertial fusion energy and applications,” in Advanced Solid-State Photonics (OSA, 2004), paper MB19.

W. S. Martin and J. P. Chernoch, “Multiple internal reflection face pumped laser,” U.S. patent 3,633,126 (4 January 1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Different types of side-pumped zig-zag slab lasers: Scheme A, face pumped; Scheme B, edge pumped; Scheme C, the edge zig-zagged laser described in this paper. In the schemes, thin (red online) arrows point to the pumped faces, while thick (blue online) arrows point to the cooled faces.

Fig. 2.
Fig. 2.

Laser output performance. Extraction efficiency (below): output power versus diodes pumping power plots for the new (squares) and old (triangles) setup. Temporal stability (above): power stability of the laser output at a 220 W extraction level (new setup with 60% OC).

Fig. 3.
Fig. 3.

Images of the HeNe collimated beam transmitted through the edge-zig-zagged slab. The different frames were obtained with different diode pumping powers at a 7 cm distance. Images refer to the setup with aligned diodes, described in the text.

Fig. 4.
Fig. 4.

Images of the HeNe collimated beam transmitted through the edge-zig-zagged slab. The different frames were obtained with different diode pumping powers at a 7 cm distance. Images refer to the setup with shifted diodes, described in the text.

Fig. 5.
Fig. 5.

Overall slab lensing effect obtained from the HeNe collimated beam focusing measurements: A, slab back focal length versus diode pumping power; B, dioptric power versus diode pumping power.

Fig. 6.
Fig. 6.

Schematic drawing of the optical system modeling the slab resonator. Upper scheme: the zig-zag path in the horizontal ( x z ) plane. Lower scheme: the equivalent resonator in the vertical ( y z ) plane. This scheme is not in scale to give a better evidence of the TL locations adopted in the modeling.

Fig. 7.
Fig. 7.

Fundamental mode beam size versus TL focal length, obtained from the ABCD analysis. The dashed (red) line refers to the new experimental setup (1 m ROC convex rear mirror and mirrors located 30 mm far from the slab ends). The solid (black) line refers to the old experimental setup (rear mirror modeled by a 10 m convex ROC and mirrors located 58 mm far from the slab ends). The dotted (blue) line refers to the old experimental setup (rear mirror modeled by a 100 m convex ROC and mirrors located 58 mm far from the slab ends).

Fig. 8.
Fig. 8.

Lowest-order beam diameter obtained from the variance of the diffractive algorithms (1 m ROC convex rear mirror and mirrors located 30 mm far from the slab ends). The arrows indicate the first (1) and the last (6) position in the parameter range of the beam intensity profiles that are plotted in Fig. 9.

Fig. 9.
Fig. 9.

Intensity profiles obtained from diffractive algorithm calculations for six TL values between 17.5 and 19.0 cm. Distributions 1 and 6 correspond to TL values inside the two stable cavity parameter regions. Distributions 2–5 are in the unstable cavity range of TL parameter values.

Fig. 10.
Fig. 10.

M 2 value of the highest-order transverse mode admitted in our cavity following the criterion defined by Eq. (2). The solid (black) line refers to the old experimental setup (long radius rear mirror and mirrors located 58 mm far from the slab ends). The dashed (red) line refers to the new experimental setup (1 m ROC convex rear mirror and mirrors located 30 mm far from the slab ends).

Fig. 11.
Fig. 11.

Experimentally measured beam quality parameter M 2 relative to the transverse direction of the thin slab cross-section. Open (black online) squares refer to the old experimental setup (long radius rear mirror and mirrors located 58 mm far from the slab ends). Solid (red online) circles refer to the new experimental setup (1 m ROC convex rear mirror and mirrors located 30 mm far from the slab ends).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

W E = 0.57 · W R ,
M MAX 2 = ( 2 a π · w s ) 2 ,

Metrics