Abstract

The properties of a laser beam coupled out of a standard unstable laser resonator are heavily dependent on the chosen resonator magnification. A higher magnification results in a higher output coupling and a better beam quality. But in some configurations, an unstable resonator with a low output coupling in combination with a good beam quality is desirable. In order to reduce the output coupling for a particular resonator, magnification fractions of the outcoupled radiation are reflected back into the cavity. In the confocal case, the output mirror consists of a spherical inner section with a high reflectivity and a flat outer section with a partial reflectivity coating. With the application of the unstable resonator with reduced output coupling (URROC), magnification and output coupling can be adjusted independently from each other and it is possible to get a good beam quality and a high power extraction for lasers with a large low gain medium. The feasibility of this resonator design is examined numerically and experimentally with the help of a chemical oxygen iodine laser.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
    [CrossRef]
  2. W. E. McDermott, N. R. Pchelkin, D. J. Benard, and R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
    [CrossRef]
  3. A. H. Paxton and W. P. Latham, “Unstable resonator with 90° beam rotation,” Appl. Opt. 25, 2939–2945 (1986).
    [CrossRef]
  4. Y. Jin, B. Yang, F. Sang, D. Zhou, L. Duo, and Q. Zhuang, “Experimental investigation of an unstable ring resonator with 90 deg beam rotation for a chemical oxygen iodine laser,” Appl. Opt. 38, 3249–3252 (1999).
    [CrossRef]
  5. C. Pargmann, T. Hall, F. Duschek, K. M. Grünewald, and J. Handke, “Hybrid resonator in a double-pass configuration for a chemical oxygen iodine laser,” Appl. Opt. 47, 6644–6649 (2008).
    [CrossRef]
  6. A. P. Zaikin, “Properties of radiation emitted by an oxygen-iodine chemical laser with an unstable telescopic resonator and an exit mirror with a Gaussian reflectivity profile,” Quantum Electron. 24, 408–410 (1994).
    [CrossRef]
  7. M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, “Two-dimensional simulation of an unstable resonator with a stable core,” Appl. Opt. 38, 3298–3307 (1999).
    [CrossRef]
  8. Y. A. Anan’ev, N. I. Grishmanova, I. M. Petrova, and N. A. Sventsitskaya, “Internal reflecting surfaces in unstable resonators,” Sov. J. Quantum Electron. 5, 1060–1062 (1975).
    [CrossRef]
  9. Y. A. Anan’ev, D. A. Goryachkin, N. A. Sventsitskaya, and I. M. Petrova, “Investigation of the properties of a laser with an unstable resonator and additional feedback,” Sov. J. Quant. Electron. 9, 1043–1044 (1979).
    [CrossRef]
  10. P. B. Corkum and H. A. Baldis, “Extra-cavity feedback into unstable resonators,” Appl. Opt. 18, 1346–1349 (1979).
    [CrossRef]
  11. N. Hodgson and H. Weber, “Unstable resonators with excited converging wave,” IEEE J. Quantum Electron. 26, 731–738 (1990).
    [CrossRef]
  12. A. H. Paxton and J. H. Erkkila, “Annular converging wave resonator: new insights,” Opt. Lett. 1, 166–168 (1977).
    [CrossRef]
  13. A. E. Siegman, Lasers (University Science Books, 1986).
  14. R. A. Chodzko, S. B. Mason, and E. F. Cross, “Annular converging wave cavity,” Appl. Opt. 15, 2137–2144 (1976).
    [CrossRef]
  15. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  16. A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).
  17. Y. A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Adam Hilger, 1992).
  18. J. Handke, K. Grünewald, and W. O. Schall, “Power extraction investigations for a 10 kW-class supersonic COIL,” Proc. SPIE 3574, 309–314 (1998).
    [CrossRef]
  19. K. M. Grünewald, J. Handke, and F. Duschek, “Small signal gain and temperature profiles in supersonic COIL,” Proc. SPIE 4184, 75–78 (2000).
    [CrossRef]
  20. W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377–381 (1978).
    [CrossRef]
  21. C. Pargmann, T. Hall, F. Duschek, K. M. Grünewald, and J. Handke, “Off-axis negative branch unstable resonator in rectangular geometry,” Appl. Opt. 50, 11–16 (2011).
    [CrossRef]

2011 (1)

2008 (1)

2000 (1)

K. M. Grünewald, J. Handke, and F. Duschek, “Small signal gain and temperature profiles in supersonic COIL,” Proc. SPIE 4184, 75–78 (2000).
[CrossRef]

1999 (2)

1998 (1)

J. Handke, K. Grünewald, and W. O. Schall, “Power extraction investigations for a 10 kW-class supersonic COIL,” Proc. SPIE 3574, 309–314 (1998).
[CrossRef]

1994 (2)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

A. P. Zaikin, “Properties of radiation emitted by an oxygen-iodine chemical laser with an unstable telescopic resonator and an exit mirror with a Gaussian reflectivity profile,” Quantum Electron. 24, 408–410 (1994).
[CrossRef]

1990 (1)

N. Hodgson and H. Weber, “Unstable resonators with excited converging wave,” IEEE J. Quantum Electron. 26, 731–738 (1990).
[CrossRef]

1986 (1)

1979 (2)

P. B. Corkum and H. A. Baldis, “Extra-cavity feedback into unstable resonators,” Appl. Opt. 18, 1346–1349 (1979).
[CrossRef]

Y. A. Anan’ev, D. A. Goryachkin, N. A. Sventsitskaya, and I. M. Petrova, “Investigation of the properties of a laser with an unstable resonator and additional feedback,” Sov. J. Quant. Electron. 9, 1043–1044 (1979).
[CrossRef]

1978 (2)

W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377–381 (1978).
[CrossRef]

W. E. McDermott, N. R. Pchelkin, D. J. Benard, and R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

1977 (1)

1976 (1)

1975 (1)

Y. A. Anan’ev, N. I. Grishmanova, I. M. Petrova, and N. A. Sventsitskaya, “Internal reflecting surfaces in unstable resonators,” Sov. J. Quantum Electron. 5, 1060–1062 (1975).
[CrossRef]

1961 (1)

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

Anan’ev, Y. A.

Y. A. Anan’ev, D. A. Goryachkin, N. A. Sventsitskaya, and I. M. Petrova, “Investigation of the properties of a laser with an unstable resonator and additional feedback,” Sov. J. Quant. Electron. 9, 1043–1044 (1979).
[CrossRef]

Y. A. Anan’ev, N. I. Grishmanova, I. M. Petrova, and N. A. Sventsitskaya, “Internal reflecting surfaces in unstable resonators,” Sov. J. Quantum Electron. 5, 1060–1062 (1975).
[CrossRef]

Y. A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Adam Hilger, 1992).

Baldis, H. A.

Benard, D. J.

W. E. McDermott, N. R. Pchelkin, D. J. Benard, and R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Bousek, R. R.

W. E. McDermott, N. R. Pchelkin, D. J. Benard, and R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Chodzko, R. A.

Corkum, P. B.

Cross, E. F.

Duo, L.

Duschek, F.

Endo, M.

Erkkila, J. H.

Fox, A. G.

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

Fujioka, T.

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Goryachkin, D. A.

Y. A. Anan’ev, D. A. Goryachkin, N. A. Sventsitskaya, and I. M. Petrova, “Investigation of the properties of a laser with an unstable resonator and additional feedback,” Sov. J. Quant. Electron. 9, 1043–1044 (1979).
[CrossRef]

Grishmanova, N. I.

Y. A. Anan’ev, N. I. Grishmanova, I. M. Petrova, and N. A. Sventsitskaya, “Internal reflecting surfaces in unstable resonators,” Sov. J. Quantum Electron. 5, 1060–1062 (1975).
[CrossRef]

Grünewald, K.

J. Handke, K. Grünewald, and W. O. Schall, “Power extraction investigations for a 10 kW-class supersonic COIL,” Proc. SPIE 3574, 309–314 (1998).
[CrossRef]

Grünewald, K. M.

Hall, T.

Handke, J.

C. Pargmann, T. Hall, F. Duschek, K. M. Grünewald, and J. Handke, “Off-axis negative branch unstable resonator in rectangular geometry,” Appl. Opt. 50, 11–16 (2011).
[CrossRef]

C. Pargmann, T. Hall, F. Duschek, K. M. Grünewald, and J. Handke, “Hybrid resonator in a double-pass configuration for a chemical oxygen iodine laser,” Appl. Opt. 47, 6644–6649 (2008).
[CrossRef]

K. M. Grünewald, J. Handke, and F. Duschek, “Small signal gain and temperature profiles in supersonic COIL,” Proc. SPIE 4184, 75–78 (2000).
[CrossRef]

J. Handke, K. Grünewald, and W. O. Schall, “Power extraction investigations for a 10 kW-class supersonic COIL,” Proc. SPIE 3574, 309–314 (1998).
[CrossRef]

Hodgson, N.

N. Hodgson and H. Weber, “Unstable resonators with excited converging wave,” IEEE J. Quantum Electron. 26, 731–738 (1990).
[CrossRef]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Jin, Y.

Kawakami, M.

Latham, W. P.

Li, T.

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

Mason, S. B.

McDermott, W. E.

W. E. McDermott, N. R. Pchelkin, D. J. Benard, and R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Nanri, K.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Pargmann, C.

Paxton, A. H.

Pchelkin, N. R.

W. E. McDermott, N. R. Pchelkin, D. J. Benard, and R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Petrova, I. M.

Y. A. Anan’ev, D. A. Goryachkin, N. A. Sventsitskaya, and I. M. Petrova, “Investigation of the properties of a laser with an unstable resonator and additional feedback,” Sov. J. Quant. Electron. 9, 1043–1044 (1979).
[CrossRef]

Y. A. Anan’ev, N. I. Grishmanova, I. M. Petrova, and N. A. Sventsitskaya, “Internal reflecting surfaces in unstable resonators,” Sov. J. Quantum Electron. 5, 1060–1062 (1975).
[CrossRef]

Rigrod, W.

W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377–381 (1978).
[CrossRef]

Sang, F.

Schall, W. O.

J. Handke, K. Grünewald, and W. O. Schall, “Power extraction investigations for a 10 kW-class supersonic COIL,” Proc. SPIE 3574, 309–314 (1998).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Sventsitskaya, N. A.

Y. A. Anan’ev, D. A. Goryachkin, N. A. Sventsitskaya, and I. M. Petrova, “Investigation of the properties of a laser with an unstable resonator and additional feedback,” Sov. J. Quant. Electron. 9, 1043–1044 (1979).
[CrossRef]

Y. A. Anan’ev, N. I. Grishmanova, I. M. Petrova, and N. A. Sventsitskaya, “Internal reflecting surfaces in unstable resonators,” Sov. J. Quantum Electron. 5, 1060–1062 (1975).
[CrossRef]

Takeda, S.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Weber, H.

N. Hodgson and H. Weber, “Unstable resonators with excited converging wave,” IEEE J. Quantum Electron. 26, 731–738 (1990).
[CrossRef]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Yang, B.

Zaikin, A. P.

A. P. Zaikin, “Properties of radiation emitted by an oxygen-iodine chemical laser with an unstable telescopic resonator and an exit mirror with a Gaussian reflectivity profile,” Quantum Electron. 24, 408–410 (1994).
[CrossRef]

Zhou, D.

Zhuang, Q.

Appl. Opt. (7)

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B 58, 365–372 (1994).
[CrossRef]

Appl. Phys. Lett. (1)

W. E. McDermott, N. R. Pchelkin, D. J. Benard, and R. R. Bousek, “An electronic transition chemical laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Bell Syst. Tech. J. (1)

A. G. Fox and T. Li, “Resonant modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453–488 (1961).

IEEE J. Quantum Electron. (2)

N. Hodgson and H. Weber, “Unstable resonators with excited converging wave,” IEEE J. Quantum Electron. 26, 731–738 (1990).
[CrossRef]

W. Rigrod, “Homogeneously broadened cw lasers with uniform distributed loss,” IEEE J. Quantum Electron. 14, 377–381 (1978).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

J. Handke, K. Grünewald, and W. O. Schall, “Power extraction investigations for a 10 kW-class supersonic COIL,” Proc. SPIE 3574, 309–314 (1998).
[CrossRef]

K. M. Grünewald, J. Handke, and F. Duschek, “Small signal gain and temperature profiles in supersonic COIL,” Proc. SPIE 4184, 75–78 (2000).
[CrossRef]

Quantum Electron. (1)

A. P. Zaikin, “Properties of radiation emitted by an oxygen-iodine chemical laser with an unstable telescopic resonator and an exit mirror with a Gaussian reflectivity profile,” Quantum Electron. 24, 408–410 (1994).
[CrossRef]

Sov. J. Quant. Electron. (1)

Y. A. Anan’ev, D. A. Goryachkin, N. A. Sventsitskaya, and I. M. Petrova, “Investigation of the properties of a laser with an unstable resonator and additional feedback,” Sov. J. Quant. Electron. 9, 1043–1044 (1979).
[CrossRef]

Sov. J. Quantum Electron. (1)

Y. A. Anan’ev, N. I. Grishmanova, I. M. Petrova, and N. A. Sventsitskaya, “Internal reflecting surfaces in unstable resonators,” Sov. J. Quantum Electron. 5, 1060–1062 (1975).
[CrossRef]

Other (3)

A. E. Siegman, Lasers (University Science Books, 1986).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Y. A. Anan’ev, Laser Resonators and the Beam Divergence Problem (Adam Hilger, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Unstable resonator with back mirror (BM), output mirror (OM) and external reflector (ER). (a) The ER is covering the complete output area and has a partial reflectivity coating. (b) The ER is covering only a part of the output area and has a high reflectivity coating.

Fig. 2.
Fig. 2.

Unstable resonator with reduced output coupling (URROC) in confocal negative-branch setup. The output mirror (OM) consists of two sections, a plane outer section and a spherical inner section, with different coatings.

Fig. 3.
Fig. 3.

(a) Numerically calculated far field of a confocal negative-branch URROC with a magnification of M=3, an outer diameter of 21 mm, and a reflectivity of the outer section of the output mirror of R=40%. (b) Output coupling in dependence on the reflectivity of the outer section of the output mirror for different magnifications M.

Fig. 4.
Fig. 4.

Numerically calculated normalized intensity distribution on the output mirror of the URROC. The inner section has a diameter of 7 mm, and the outer section has a diameter of 21 mm. The magnification is M=3 and the reflectivity of the outer section of the output mirror is R=40%.

Fig. 5.
Fig. 5.

Measured far field of a confocal negative-branch URROC with a magnification of M=3, an outer diameter of 21 mm, and a reflectivity of the outer section of the output mirror of R=40%.

Metrics