Abstract

Novel integral floating three-dimensional (3D) display methods are proposed for implementing an augmented reality (AR) system. The 3D display for AR requires a long-range focus depth and a see-though property. A system that adopts a concave lens instead of a convex lens is proposed for realizing the integral floating system with a long working distance using a reduced pixel pitch of the elemental image. An investigation that reveals that the location of the central depth plane is restricted by the pixel pitch of the display device is presented. An optical see-through system using a convex half mirror is also proposed for providing 3D images with a proper accommodation response. The concepts of the proposed methods are explained and the validity of system is proved by the experimental results.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.
  2. O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
    [CrossRef]
  3. S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393 (2010).
    [CrossRef]
  4. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19, 704–716 (2011).
    [CrossRef]
  5. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18, 8824–8835 (2010).
    [CrossRef]
  6. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50, H87–H115 (2011).
    [CrossRef]
  7. Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
    [CrossRef]
  8. F. Jin, J. Jang, and B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29, 1345–1347 (2004).
    [CrossRef]
  9. J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
    [CrossRef]
  10. S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
    [CrossRef]
  11. J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
    [CrossRef]
  12. G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
    [CrossRef]
  13. F. W. Campbell, and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).
  14. K. Hong, J. Hong, J.-H. Jung, J.-H. Park, and B. Lee, “Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging,” Opt. Express 18, 12002–12016 (2010).
    [CrossRef]
  15. T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwase, “The D-ILA device for the world’s highest definition (8K4K) projection systems,” in Proceedings of International Display Workshop (Society for Information Display, 2008), pp. 203–206.
  16. J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
    [CrossRef]
  17. J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
    [CrossRef]
  18. J. Hong, Y. Kim, S.-G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
    [CrossRef]
  19. J. Hong, J. Kim, and B. Lee, “Two-dimensional/three-dimensional convertible integral imaging using dual depth configuration,” Appl. Phys. Express 5, 012501 (2012).
    [CrossRef]
  20. J. Jung, J. Hong, B. Lee, and S.-W. Min, “Augmented reality system based on integral floating method,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper DTuC22.
  21. Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
    [CrossRef]

2012 (2)

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
[CrossRef]

J. Hong, J. Kim, and B. Lee, “Two-dimensional/three-dimensional convertible integral imaging using dual depth configuration,” Appl. Phys. Express 5, 012501 (2012).
[CrossRef]

2011 (2)

2010 (4)

2009 (3)

2008 (1)

2007 (1)

2006 (1)

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

2005 (1)

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
[CrossRef]

2004 (1)

2001 (1)

1965 (1)

F. W. Campbell, and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).

Ando, H.

Billinghurst, M.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.

Cakmakci, O.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

Campbell, F. W.

F. W. Campbell, and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).

Chen, N.

Cheng, D.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393 (2010).
[CrossRef]

Choi, H.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
[CrossRef]

Choi, H.-J.

Duh, H. B.-L.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.

Furuya, M.

T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwase, “The D-ILA device for the world’s highest definition (8K4K) projection systems,” in Proceedings of International Display Workshop (Society for Information Display, 2008), pp. 203–206.

Green, D. G.

F. W. Campbell, and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).

Hahn, J.

Hong, J.

Hong, J.-H.

Hong, K.

Hua, H.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393 (2010).
[CrossRef]

Hwang, J.-M.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
[CrossRef]

Iwase, K.

T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwase, “The D-ILA device for the world’s highest definition (8K4K) projection systems,” in Proceedings of International Display Workshop (Society for Information Display, 2008), pp. 203–206.

Jang, J.

Javidi, B.

Jin, F.

Jung, J.

J. Jung, J. Hong, B. Lee, and S.-W. Min, “Augmented reality system based on integral floating method,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper DTuC22.

Jung, J.-H.

Jung, S.

Kashiwada, S.

Kim, H.

Kim, J.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
[CrossRef]

J. Hong, J. Kim, and B. Lee, “Two-dimensional/three-dimensional convertible integral imaging using dual depth configuration,” Appl. Phys. Express 5, 012501 (2012).
[CrossRef]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
[CrossRef]

Kim, Y.

Kim, Y.-H.

Kozakai, T.

T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwase, “The D-ILA device for the world’s highest definition (8K4K) projection systems,” in Proceedings of International Display Workshop (Society for Information Display, 2008), pp. 203–206.

Lee, B.

J. Hong, J. Kim, and B. Lee, “Two-dimensional/three-dimensional convertible integral imaging using dual depth configuration,” Appl. Phys. Express 5, 012501 (2012).
[CrossRef]

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
[CrossRef]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50, H87–H115 (2011).
[CrossRef]

K. Hong, J. Hong, J.-H. Jung, J.-H. Park, and B. Lee, “Rectification of elemental image set and extraction of lens lattice by projective image transformation in integral imaging,” Opt. Express 18, 12002–12016 (2010).
[CrossRef]

J. Hong, Y. Kim, S.-G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[CrossRef]

J.-H. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, H77–H94 (2009).
[CrossRef]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
[CrossRef]

J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
[CrossRef]

J. Jung, J. Hong, B. Lee, and S.-W. Min, “Augmented reality system based on integral floating method,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper DTuC22.

Lee, S.-D.

Liu, S.

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393 (2010).
[CrossRef]

Min, S.-W.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
[CrossRef]

J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50, H87–H115 (2011).
[CrossRef]

J. Hong, Y. Kim, S.-G. Park, J.-H. Hong, S.-W. Min, S.-D. Lee, and B. Lee, “3D/2D convertible projection-type integral imaging using concave half mirror array,” Opt. Express 18, 20628–20637 (2010).
[CrossRef]

G. Park, J.-H. Jung, K. Hong, Y. Kim, Y.-H. Kim, S.-W. Min, and B. Lee, “Multi-viewer tracking integral imaging system and its viewing zone analysis,” Opt. Express 17, 17895–17908 (2009).
[CrossRef]

Y. Kim, S.-G. Park, S.-W. Min, and B. Lee, “Integral imaging system using a dual-mode technique,” Appl. Opt. 48, H71–H76 (2009).
[CrossRef]

J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of integral floating system,” Appl. Opt. 47, D80–D86 (2008).
[CrossRef]

J. Kim, S.-W. Min, and B. Lee, “Viewing region maximization of an integral floating display through location adjustment of viewing window,” Opt. Express 15, 13023–13034 (2007).
[CrossRef]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
[CrossRef]

J.-H. Park, S.-W. Min, S. Jung, and B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
[CrossRef]

J. Jung, J. Hong, B. Lee, and S.-W. Min, “Augmented reality system based on integral floating method,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper DTuC22.

Nago, N.

Nagoya, T.

T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwase, “The D-ILA device for the world’s highest definition (8K4K) projection systems,” in Proceedings of International Display Workshop (Society for Information Display, 2008), pp. 203–206.

Nakamura, K.

Park, G.

Park, J.-H.

Park, S.-G.

Rolland, J.

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

Seo, J.-M.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
[CrossRef]

Suzuki, T.

T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwase, “The D-ILA device for the world’s highest definition (8K4K) projection systems,” in Proceedings of International Display Workshop (Society for Information Display, 2008), pp. 203–206.

Takaki, Y.

Urano, Y.

Yang, H. K.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
[CrossRef]

Zhou, F.

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.

Appl. Opt. (5)

Appl. Phys. Express (1)

J. Hong, J. Kim, and B. Lee, “Two-dimensional/three-dimensional convertible integral imaging using dual depth configuration,” Appl. Phys. Express 5, 012501 (2012).
[CrossRef]

IEEE Trans. Vis. Comput. Graph. (1)

S. Liu, H. Hua, and D. Cheng, “A novel prototype for an optical see-through head-mounted display with addressable focus cues,” IEEE Trans. Vis. Comput. Graph. 16, 381–393 (2010).
[CrossRef]

J. Disp. Technol. (2)

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8, 70–78 (2012).
[CrossRef]

O. Cakmakci and J. Rolland, “Head-worn displays: a review,” J. Disp. Technol. 2, 199–216 (2006).
[CrossRef]

J. Physiol. (1)

F. W. Campbell, and D. G. Green, “Optical and retinal factors affecting visual resolution,” J. Physiol. 181, 576–593 (1965).

Jpn. J. Appl. Phys. (1)

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44, L71–L74 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Other (3)

F. Zhou, H. B.-L. Duh, and M. Billinghurst, “Trends in augmented reality tracking, interaction and display: a review of ten years of ISMAR,” in Proceedings of 7th IEEE/ACM International Symposium (IEEE, 2008), pp. 193–202.

T. Nagoya, T. Kozakai, T. Suzuki, M. Furuya, and K. Iwase, “The D-ILA device for the world’s highest definition (8K4K) projection systems,” in Proceedings of International Display Workshop (Society for Information Display, 2008), pp. 203–206.

J. Jung, J. Hong, B. Lee, and S.-W. Min, “Augmented reality system based on integral floating method,” in Digital Holography and Three-Dimensional Imaging, OSA Technical Digest (CD) (Optical Society of America, 2011), paper DTuC22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Concept of optical see-through HMD based on an integral floating scheme adopting a convex half mirror. The integrated image is provided to the observer through the optical path specified as the “optical path of integrated image.” The integrated image appears as a virtual image behind the convex half mirror; therefore, the perceived optical path is a dashed arrow specified as the “hypothetical optical path of integrated image.”

Fig. 2.
Fig. 2.

Interpretation of an integral floating scheme adopting a concave lens instead of a convex lens. The entire system can be interpreted as an effective InIm system.

Fig. 3.
Fig. 3.

Definition of parameters used for analysis in the virtual mode InIm scheme.

Fig. 4.
Fig. 4.

Relationship between lenslet pitch and lateral pixel pitch of the integrated image used for enabling virtual mode InIm. Human visual acuity is also depicted as cycles per degree.

Fig. 5.
Fig. 5.

Conditions for avoiding cross talk between the disparity information of left and right eyes. Regions 1 and 2 should be completely separated.

Fig. 6.
Fig. 6.

Minimum quantization step of the displayed integrated image around the central depth plane.

Fig. 7.
Fig. 7.

Depth discrimination (or longitudinal resolving power) of the HVS around the central depth plane.

Fig. 8.
Fig. 8.

Results of a numerical simulation showing the dependence of the upper bound of L on p , φ , and m . (a) Upper bound according to p and m , (b) upper bound according to θ and m .

Fig. 9.
Fig. 9.

Simulation result showing the extended upper bound of L according to G and F .

Fig. 10.
Fig. 10.

Fabrication process of convex half mirror.

Fig. 11.
Fig. 11.

Camera-captured images showing the disparity in integrated images displayed by an integral floating system with a concave lens for various values of L : (a)  L = 40 mm , (b)  L = 70 mm , (c)  L = 149 mm , (d)  L = 300 mm . For each L , “3” and “ D ” are located 10 mm in front of and behind the central depth plane. For (c) and (d), the camera focus could not cover both the ruler and the integrated image. The center images of (c) and (d) are focused at integrated images.

Fig. 12.
Fig. 12.

Implemented prototype of convex half mirror.

Fig. 13.
Fig. 13.

Camera-captured images of integrated image “N” displayed by the integral floating system adopting a convex half mirror. L was set to 30 mm. Real objects “S” and “U,” which are printed on pieces of paper, were located for disparity comparison. “U” is located at the same distance as “N,” while “S” is 30 mm behind “N” and “U.”

Tables (2)

Tables Icon

Table 1. System Specifications for the Experimental Setup of the Integral Floating Display Using a Concave Lens

Tables Icon

Table 2. Comparison of Theoretical and Experimental Values of L and θ Using an Interpretation of the Proposed System as an Effective InIm System

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Ω = 2 tan 1 ( θ 2 ) ,
P I < π 180 ( L + D ) m ,
L Ω φ p < π 180 ( L + D ) m ,
L < D ( 180 π m p Ω φ 1 ) ,
p > π 180 φ m Ω = p lpd ,
φ < L L + D d e ,
δ f = P I ( L + D ) d e + P I , δ b = P I ( L + D ) d e P I ,
δ b = P I ( L + D ) d e P I < π 180 ( L + D ) 2 d e m .
L < 1 2 [ ( φ d e p Ω 180 π d e m D ) + ( φ d e p Ω 180 π d e m D ) 2 + 4 φ d e D p Ω ] .
δ b = P I ( L + D ) d e P I < N g .
L < d e φ 3 p 2 Ω 2 D + p φ ( φ + d e ) Ω .
L < min ( 1 2 [ ( φ d e p Ω 180 π d e m D ) + ( φ d e p Ω 180 π d e m D ) 2 + 4 φ d e D p Ω ] , d e φ 3 p 2 Ω 2 D + p φ ( φ + d e ) Ω , D ( 180 π m p Ω φ 1 ) ) .
p e = 1 G / F + g / F + 1 p , φ e = 1 G / F + 1 φ , f e = 1 ( G / F + 1 ) 2 f .
φ = ( G / F + 1 ) φ o , f = ( G / F + 1 ) 2 f e ( G / F + 1 ) 2 φ o Ω ,
Ω o φ f = 1 ( G / F + 1 ) φ e f e 1 ( G / F + 1 ) Ω .

Metrics