Abstract

In this work, the effects of size and wetting layer (WL) on subband electronic envelop functions, eigenenergies, linear and nonlinear absorption coefficients, and refractive indices of a dome-shaped InAs/GaAs quantum dot (QD) were investigated. In our model, a dome of InAs QD with its WL embedded in a GaAs matrix was considered. A finite height barrier potential at the InAs/GaAs interface was assumed. To calculate envelope functions and eigenenergies, the effective one-electronic-band Hamiltonian and electron effective mass approximation were used. The linear and nonlinear optical properties were calculated by the density matrix formalism.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Teleb, K. Abedi, and S. Golmohammadi, “Operation of quantum-dot semiconductor optical amplifiers under nonuniform current injection,” Appl. Opt. 50, 608–617(2011).
    [CrossRef]
  2. A. Karimkhani and M. K. Moravvej-Farsh, “Temperature dependence of optical near field energy transfer rate between two quantum dots in nanophotonic devices,” Appl. Opt. 49, 1012–1019 (2010).
    [CrossRef]
  3. T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999).
    [CrossRef]
  4. P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum dot optoelectronic devices,” Annu. Rev. Mater. Res. 34, 1–40 (2004).
    [CrossRef]
  5. K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
    [CrossRef]
  6. T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
    [CrossRef]
  7. B. L. Liang, Z. M. Wang, Yu. I. Mazur, and G. J. Salamo, “Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots,” Appl. Phys. Lett. 89, 243124 (2006).
    [CrossRef]
  8. P. A. S. Jorge, M. Mayeh, R. Benrashid, P. Caldas, J. L. Santos, and F. Farahi, “Applications of quantum dots in optical fiber luminescent oxygen sensors,” Appl. Opt. 45, 3760–3767 (2006).
    [CrossRef]
  9. Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
    [CrossRef]
  10. S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot integration in heterostructure solar cell,” Sol. Energy Mater. Sol. Cells 90, 2968–2974 (2006).
    [CrossRef]
  11. A. Luque, A. Marti, E. Antolin, and P. Garcia-Linares, “Intraband absorption for normal illumination in quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 94, 2032–2035 (2010).
    [CrossRef]
  12. Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, “Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 310, 2320–2325 (2008).
    [CrossRef]
  13. D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of WL states on the gain-current characteristics of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
    [CrossRef]
  14. E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
    [CrossRef]
  15. J. J. Coleman, J. D. Young, and A. Garg, “Semiconductor quantum dot laser: a tutorial,” J. Lightwave Technol. 29, 499–510 (2011).
    [CrossRef]
  16. M. R. K. Vahdani and G. Rezaei, “Linear and nonlinear optical properties of a hydrogen donor in lens-shaped quantum dots,” Phys. Lett. A 373, 3079–3084 (2009).
    [CrossRef]
  17. M. Barati, G. Rezaei, and M. R. K. Vahdani, “Binding energy of a hydrogenic donor impurity in an ellipsoidal finite-potential quantum dot,” Phys. Status Solidi B 244, 2605–2610 (2007).
    [CrossRef]
  18. K. J. Kuhn, G. U. Lyengar, and S. Yee, “Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells,” J. Appl. Phys. 70, 5010–5017 (1991).
    [CrossRef]
  19. V.-T. Rangel-Kuoppa, G. Chen, and W. Jantsch, “Electrical study of self-assembled Ge quantum dots in p-type silicon. Temperature dependent capacitance voltage and DLTS study,” Solid State Phenom. 178–179, 67–71 (2011).
    [CrossRef]
  20. C. Lang, D. Nguen-Manh, and D. J. H. Cochayne, “Modelling Ge/Si quantum dot using finite element analysis and atomistic simulation,” J. Phys. Conf. Ser. 29, 141–144 (2006).
    [CrossRef]
  21. X.-F. Yang, K. Fu, W.-L. Xu, and Y. Fu, “Strain effect in determining the geometric shape of self-assembled quantum dot,” J. Phys. D: Appl. Phys. 42, 125414 (2009).
    [CrossRef]
  22. N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
    [CrossRef]
  23. N. Nuntawong, S. Birudavolu, C. P. Hains, H. Xu, and D. L. Huffaker, “Effect of strain compensation in staked 1.3 μm InAs/GaS quantum dot active regions grown by metallographic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).
    [CrossRef]
  24. V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
    [CrossRef]
  25. O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained QDs modeled by 8-band k·ptheory,” Phys. Rev. B 59, 5688–5701 (1999).
    [CrossRef]
  26. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).
  27. I. Filikhin, E. Deyneka, G. Melikian, and B. Vlahovic, “Electron states of semiconductor quantum ring with geometry and size variations,” Mol. Simulat. 31, 779–785 (2005).
    [CrossRef]
  28. X.-F. Yang, X.-S. Chen, W. Lu, and Y. Fu, “Effects of shape and strain distribution of quantum dots on optical transmission in the quantum dot infrared photodetector,” Nanoscale Res. Lett. 3, 534–539 (2008).
    [CrossRef]
  29. Y. Li, O. Voskoboynikov, C. P. Lee, and S. M. Sze, “Computer simulation of electron energy level for different shape InAs/GaAs semiconductor quantum dots,” Comput. Phys. Commun. 141, 66–72 (2001).
    [CrossRef]
  30. D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B 50, 11687–11692 (1994).
    [CrossRef]
  31. T. Walther, A. G. Gullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86, 2381–2384 (2001).
    [CrossRef]
  32. A. G. Gullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski–Krastanow transition and epitaxial island growth,” Phys. Rev. B 66, 81305–81401 (2002).
    [CrossRef]
  33. N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” J. Phys. 16, S3277–S3318 (2004).
    [CrossRef]
  34. N. Tansua and L. J. Mawst, “Current injection efficiency of InGaAsN quantum well lasers,” J. Appl. Phys. 97, 054502 (2005).
    [CrossRef]
  35. M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in InxGa1−xN/GaN quantum dots using an eight-band k·p model,” Phys. Rev. Lett. 74, 155322 (2006).
    [CrossRef]
  36. N. Nuntawong, J. Tatebayashi, P. S. Wong, and D. L. Huffaker, “Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structure,” Appl. Phys. Lett. 90, 163121 (2007).
    [CrossRef]
  37. H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for laser and light emitting diodes,” IEEE J. Quantum Electron. 45, 66–78 (2009).
    [CrossRef]
  38. S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).
    [CrossRef]
  39. D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006).
    [CrossRef]
  40. S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi C 2, 826–832 (2005).
    [CrossRef]
  41. H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
    [CrossRef]
  42. R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot laser,” Appl. Phys. Lett. 78, 1207–1209 (2001).
    [CrossRef]
  43. M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
    [CrossRef]
  44. R. Oshima, N. Kurihara, H. Shigekawa, and Y. Okada, “Electronic states of self-organized InGaAs quantum dots on GaAs (311) B studied by conductive scanning probe microscopy,” Phys. E 21, 414–418 (2004).
    [CrossRef]
  45. R. V. N. Melnik and K. N. Zotsenko, “Finite element analysis of coupled electronic states in quantum dot nanostructures,” Model. Simul. Mat. Sci. Eng. 12, 465–477 (2004).
    [CrossRef]
  46. F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
    [CrossRef]
  47. R. V. N. Melnik and M. Willatzen, “Modelling coupled motion of electrons in quantum dots with wetting layers,” in Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems (NSTI, 2002), pp. 506–509.
  48. D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
    [CrossRef]
  49. J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
    [CrossRef]
  50. J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
    [CrossRef]
  51. M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
    [CrossRef]
  52. R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
    [CrossRef]
  53. K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett. 76, 3212–3214 (2000).
    [CrossRef]
  54. T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
    [CrossRef]
  55. J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009).
    [CrossRef]
  56. G. Liu, H. Zhao, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6, 342 (2011).
    [CrossRef]
  57. F. Zhang, L. Zhang, Y.-X. Wang, and R. Claus, “Enhanced absorption and electro-optic Pockels effect of electrostatically self-assembled CdSe quantum dots,” Appl. Opt. 44, 3969–3976 (2005).
    [CrossRef]
  58. A. D. Seddik and I. Zorkani, “Optical properties of a magneto-donor in a quantum dot,” Phys. E 28, 339–346 (2005).
    [CrossRef]
  59. A. Rostami, H. Rasooli Saghai, N. Sadoogi, and H. Baghban Asghari Nejad, “Proposal for ultra-high performance infrared quantum dot,” Opt. Express 16, 2752–2763 (2008).
    [CrossRef]
  60. C. H. Liu and B.-R. Xu, “Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot,” Phys. Lett. A 372, 888–892 (2008).
    [CrossRef]
  61. M. R. K. Vahdani and G. Rezaei, “Intersubband optical properties absorption coefficients and refractive index changes in a parabolic cylinder quantum dot,” Phys. Lett. A 374, 637–643 (2010).
    [CrossRef]
  62. W. Xie, “Laser radiation effects on optical absorptions and refractive index in a quantum dot,” Opt. Commun. 283, 3703–3706 (2010).
    [CrossRef]
  63. G. Rezaei, Z. Mousazadeh, and B. Veseghi, “Nonlinear optical properties of a two dimensional elliptic quantum dot,” Physica E 42, 1477–1481 (2010).
    [CrossRef]
  64. L. Lu and W. Xie, “Impurity and exciton effects on the nonlinear optical properties of a disc-like quantum dot under a magnetic field,” Superlatt. Microstuct. 50, 40–49 (2011).
    [CrossRef]
  65. W. Xie, “A study of nonlinear optical properties of a negative donor quantum dot,” Opt. Commun. 284, 4756–4760(2011).
    [CrossRef]
  66. S. Liang and W. Xie, “Effects of the hydrogenic pressure and temperature on optical properties of a hydrogenic impurity in the disc-like quantum dot,” Physica B 406, 2224–2230 (2011).
    [CrossRef]
  67. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98, 151115 (2011).
    [CrossRef]
  68. S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum well structures with Ga-and N-faces,” Jpn. J. Appl. Phys. 50, 072101 (2011).
    [CrossRef]
  69. H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19, A991–A1007 (2011).
    [CrossRef]
  70. R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
    [CrossRef]
  71. J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110, 113110 (2011).
    [CrossRef]
  72. Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E 44, 821–825 (2012).
    [CrossRef]
  73. J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-GaN quantum wells laser active region in mid-and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98, 171111 (2011).
    [CrossRef]
  74. J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
    [CrossRef]
  75. S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003).
    [CrossRef]
  76. S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 μm GaInNAsSb lasers,” IEEE J. Sel. Top Quantum Electron. 11, 1089–1098 (2005).
    [CrossRef]
  77. S. Datta, Quantum Phenomena: Modular Series on Solid-State Devices, Vol. 8 (Addison-Wesley, 1989).
  78. R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

2012 (1)

Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E 44, 821–825 (2012).
[CrossRef]

2011 (17)

J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-GaN quantum wells laser active region in mid-and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98, 171111 (2011).
[CrossRef]

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

L. Lu and W. Xie, “Impurity and exciton effects on the nonlinear optical properties of a disc-like quantum dot under a magnetic field,” Superlatt. Microstuct. 50, 40–49 (2011).
[CrossRef]

W. Xie, “A study of nonlinear optical properties of a negative donor quantum dot,” Opt. Commun. 284, 4756–4760(2011).
[CrossRef]

S. Liang and W. Xie, “Effects of the hydrogenic pressure and temperature on optical properties of a hydrogenic impurity in the disc-like quantum dot,” Physica B 406, 2224–2230 (2011).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98, 151115 (2011).
[CrossRef]

S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum well structures with Ga-and N-faces,” Jpn. J. Appl. Phys. 50, 072101 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19, A991–A1007 (2011).
[CrossRef]

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110, 113110 (2011).
[CrossRef]

S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).
[CrossRef]

M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
[CrossRef]

G. Liu, H. Zhao, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6, 342 (2011).
[CrossRef]

H. Teleb, K. Abedi, and S. Golmohammadi, “Operation of quantum-dot semiconductor optical amplifiers under nonuniform current injection,” Appl. Opt. 50, 608–617(2011).
[CrossRef]

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

J. J. Coleman, J. D. Young, and A. Garg, “Semiconductor quantum dot laser: a tutorial,” J. Lightwave Technol. 29, 499–510 (2011).
[CrossRef]

V.-T. Rangel-Kuoppa, G. Chen, and W. Jantsch, “Electrical study of self-assembled Ge quantum dots in p-type silicon. Temperature dependent capacitance voltage and DLTS study,” Solid State Phenom. 178–179, 67–71 (2011).
[CrossRef]

2010 (6)

A. Luque, A. Marti, E. Antolin, and P. Garcia-Linares, “Intraband absorption for normal illumination in quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 94, 2032–2035 (2010).
[CrossRef]

A. Karimkhani and M. K. Moravvej-Farsh, “Temperature dependence of optical near field energy transfer rate between two quantum dots in nanophotonic devices,” Appl. Opt. 49, 1012–1019 (2010).
[CrossRef]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
[CrossRef]

M. R. K. Vahdani and G. Rezaei, “Intersubband optical properties absorption coefficients and refractive index changes in a parabolic cylinder quantum dot,” Phys. Lett. A 374, 637–643 (2010).
[CrossRef]

W. Xie, “Laser radiation effects on optical absorptions and refractive index in a quantum dot,” Opt. Commun. 283, 3703–3706 (2010).
[CrossRef]

G. Rezaei, Z. Mousazadeh, and B. Veseghi, “Nonlinear optical properties of a two dimensional elliptic quantum dot,” Physica E 42, 1477–1481 (2010).
[CrossRef]

2009 (5)

J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009).
[CrossRef]

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

M. R. K. Vahdani and G. Rezaei, “Linear and nonlinear optical properties of a hydrogen donor in lens-shaped quantum dots,” Phys. Lett. A 373, 3079–3084 (2009).
[CrossRef]

X.-F. Yang, K. Fu, W.-L. Xu, and Y. Fu, “Strain effect in determining the geometric shape of self-assembled quantum dot,” J. Phys. D: Appl. Phys. 42, 125414 (2009).
[CrossRef]

H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for laser and light emitting diodes,” IEEE J. Quantum Electron. 45, 66–78 (2009).
[CrossRef]

2008 (4)

X.-F. Yang, X.-S. Chen, W. Lu, and Y. Fu, “Effects of shape and strain distribution of quantum dots on optical transmission in the quantum dot infrared photodetector,” Nanoscale Res. Lett. 3, 534–539 (2008).
[CrossRef]

Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, “Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 310, 2320–2325 (2008).
[CrossRef]

A. Rostami, H. Rasooli Saghai, N. Sadoogi, and H. Baghban Asghari Nejad, “Proposal for ultra-high performance infrared quantum dot,” Opt. Express 16, 2752–2763 (2008).
[CrossRef]

C. H. Liu and B.-R. Xu, “Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot,” Phys. Lett. A 372, 888–892 (2008).
[CrossRef]

2007 (3)

M. Barati, G. Rezaei, and M. R. K. Vahdani, “Binding energy of a hydrogenic donor impurity in an ellipsoidal finite-potential quantum dot,” Phys. Status Solidi B 244, 2605–2610 (2007).
[CrossRef]

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[CrossRef]

N. Nuntawong, J. Tatebayashi, P. S. Wong, and D. L. Huffaker, “Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structure,” Appl. Phys. Lett. 90, 163121 (2007).
[CrossRef]

2006 (7)

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in InxGa1−xN/GaN quantum dots using an eight-band k·p model,” Phys. Rev. Lett. 74, 155322 (2006).
[CrossRef]

C. Lang, D. Nguen-Manh, and D. J. H. Cochayne, “Modelling Ge/Si quantum dot using finite element analysis and atomistic simulation,” J. Phys. Conf. Ser. 29, 141–144 (2006).
[CrossRef]

B. L. Liang, Z. M. Wang, Yu. I. Mazur, and G. J. Salamo, “Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots,” Appl. Phys. Lett. 89, 243124 (2006).
[CrossRef]

P. A. S. Jorge, M. Mayeh, R. Benrashid, P. Caldas, J. L. Santos, and F. Farahi, “Applications of quantum dots in optical fiber luminescent oxygen sensors,” Appl. Opt. 45, 3760–3767 (2006).
[CrossRef]

S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot integration in heterostructure solar cell,” Sol. Energy Mater. Sol. Cells 90, 2968–2974 (2006).
[CrossRef]

D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

2005 (7)

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi C 2, 826–832 (2005).
[CrossRef]

F. Zhang, L. Zhang, Y.-X. Wang, and R. Claus, “Enhanced absorption and electro-optic Pockels effect of electrostatically self-assembled CdSe quantum dots,” Appl. Opt. 44, 3969–3976 (2005).
[CrossRef]

A. D. Seddik and I. Zorkani, “Optical properties of a magneto-donor in a quantum dot,” Phys. E 28, 339–346 (2005).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 μm GaInNAsSb lasers,” IEEE J. Sel. Top Quantum Electron. 11, 1089–1098 (2005).
[CrossRef]

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

N. Tansua and L. J. Mawst, “Current injection efficiency of InGaAsN quantum well lasers,” J. Appl. Phys. 97, 054502 (2005).
[CrossRef]

I. Filikhin, E. Deyneka, G. Melikian, and B. Vlahovic, “Electron states of semiconductor quantum ring with geometry and size variations,” Mol. Simulat. 31, 779–785 (2005).
[CrossRef]

2004 (7)

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” J. Phys. 16, S3277–S3318 (2004).
[CrossRef]

N. Nuntawong, S. Birudavolu, C. P. Hains, H. Xu, and D. L. Huffaker, “Effect of strain compensation in staked 1.3 μm InAs/GaS quantum dot active regions grown by metallographic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).
[CrossRef]

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum dot optoelectronic devices,” Annu. Rev. Mater. Res. 34, 1–40 (2004).
[CrossRef]

R. Oshima, N. Kurihara, H. Shigekawa, and Y. Okada, “Electronic states of self-organized InGaAs quantum dots on GaAs (311) B studied by conductive scanning probe microscopy,” Phys. E 21, 414–418 (2004).
[CrossRef]

R. V. N. Melnik and K. N. Zotsenko, “Finite element analysis of coupled electronic states in quantum dot nanostructures,” Model. Simul. Mat. Sci. Eng. 12, 465–477 (2004).
[CrossRef]

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

2003 (3)

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003).
[CrossRef]

E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

2002 (3)

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of WL states on the gain-current characteristics of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

A. G. Gullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski–Krastanow transition and epitaxial island growth,” Phys. Rev. B 66, 81305–81401 (2002).
[CrossRef]

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

2001 (3)

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot laser,” Appl. Phys. Lett. 78, 1207–1209 (2001).
[CrossRef]

T. Walther, A. G. Gullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86, 2381–2384 (2001).
[CrossRef]

Y. Li, O. Voskoboynikov, C. P. Lee, and S. M. Sze, “Computer simulation of electron energy level for different shape InAs/GaAs semiconductor quantum dots,” Comput. Phys. Commun. 141, 66–72 (2001).
[CrossRef]

2000 (3)

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett. 76, 3212–3214 (2000).
[CrossRef]

1999 (2)

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained QDs modeled by 8-band k·ptheory,” Phys. Rev. B 59, 5688–5701 (1999).
[CrossRef]

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999).
[CrossRef]

1996 (1)

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

1994 (1)

D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B 50, 11687–11692 (1994).
[CrossRef]

1991 (1)

K. J. Kuhn, G. U. Lyengar, and S. Yee, “Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells,” J. Appl. Phys. 70, 5010–5017 (1991).
[CrossRef]

Abedi, K.

Adamson, D. H.

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

Adeler, F.

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Ahn, D.

S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).
[CrossRef]

S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum well structures with Ga-and N-faces,” Jpn. J. Appl. Phys. 50, 072101 (2011).
[CrossRef]

Al-Khafaji, M.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Allard, S.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Antolin, E.

A. Luque, A. Marti, E. Antolin, and P. Garcia-Linares, “Intraband absorption for normal illumination in quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 94, 2032–2035 (2010).
[CrossRef]

Arakawa, Y.

K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett. 76, 3212–3214 (2000).
[CrossRef]

Arif, R. A.

H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for laser and light emitting diodes,” IEEE J. Quantum Electron. 45, 66–78 (2009).
[CrossRef]

Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, “Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 310, 2320–2325 (2008).
[CrossRef]

Badcock, T.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Bae, H.

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

Baghban Asghari Nejad, H.

Bakhshi, R.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[CrossRef]

Bank, S. R.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 μm GaInNAsSb lasers,” IEEE J. Sel. Top Quantum Electron. 11, 1089–1098 (2005).
[CrossRef]

S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003).
[CrossRef]

Barati, M.

M. Barati, G. Rezaei, and M. R. K. Vahdani, “Binding energy of a hydrogenic donor impurity in an ellipsoidal finite-potential quantum dot,” Phys. Status Solidi B 244, 2605–2610 (2007).
[CrossRef]

Barker, J. A.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Bauknecht, A.

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Benrashid, R.

Bhattacharya, P.

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum dot optoelectronic devices,” Annu. Rev. Mater. Res. 34, 1–40 (2004).
[CrossRef]

Bimberg, D.

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in InxGa1−xN/GaN quantum dots using an eight-band k·p model,” Phys. Rev. Lett. 74, 155322 (2006).
[CrossRef]

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot laser,” Appl. Phys. Lett. 78, 1207–1209 (2001).
[CrossRef]

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained QDs modeled by 8-band k·ptheory,” Phys. Rev. B 59, 5688–5701 (1999).
[CrossRef]

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Birudavolu, S.

N. Nuntawong, S. Birudavolu, C. P. Hains, H. Xu, and D. L. Huffaker, “Effect of strain compensation in staked 1.3 μm InAs/GaS quantum dot active regions grown by metallographic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).
[CrossRef]

Blood, P.

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

Bossert, D. J.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999).
[CrossRef]

Boyd, R.

R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Briot, O.

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi C 2, 826–832 (2005).
[CrossRef]

Brown, G. J.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Butte, R.

D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006).
[CrossRef]

Caldas, P.

Carlin, J. F.

D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006).
[CrossRef]

Chaikin, P. M.

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

Chen, G.

V.-T. Rangel-Kuoppa, G. Chen, and W. Jantsch, “Electrical study of self-assembled Ge quantum dots in p-type silicon. Temperature dependent capacitance voltage and DLTS study,” Solid State Phenom. 178–179, 67–71 (2011).
[CrossRef]

Chen, X.-S.

X.-F. Yang, X.-S. Chen, W. Lu, and Y. Fu, “Effects of shape and strain distribution of quantum dots on optical transmission in the quantum dot infrared photodetector,” Nanoscale Res. Lett. 3, 534–539 (2008).
[CrossRef]

Choi, T. L.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Cirlin, G. E.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Clark, J. C.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Claus, R.

Cochayne, D. J. H.

C. Lang, D. Nguen-Manh, and D. J. H. Cochayne, “Modelling Ge/Si quantum dot using finite element analysis and atomistic simulation,” J. Phys. Conf. Ser. 29, 141–144 (2006).
[CrossRef]

Coleman, J. J.

Colombo, D.

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

Cullis, A. G.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Dapkus, P. D.

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

Datta, S.

S. Datta, Quantum Phenomena: Modular Series on Solid-State Devices, Vol. 8 (Addison-Wesley, 1989).

DenBaars, S. P.

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

Deyneka, E.

I. Filikhin, E. Deyneka, G. Melikian, and B. Vlahovic, “Electron states of semiconductor quantum ring with geometry and size variations,” Mol. Simulat. 31, 779–785 (2005).
[CrossRef]

Dierolf, V.

Dubrovskii, V. G.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Dumsch, L.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Dutta, M.

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Eck, M.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Ee, Y. K.

H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for laser and light emitting diodes,” IEEE J. Quantum Electron. 45, 66–78 (2009).
[CrossRef]

Ee, Y.-K.

Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, “Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 310, 2320–2325 (2008).
[CrossRef]

Egorov, V. A.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Farahi, F.

Farrell, R. M.

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

Feezell, D. F.

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

Feltin, E.

D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006).
[CrossRef]

Ferguson, J. W.

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

Filikhin, I.

I. Filikhin, E. Deyneka, G. Melikian, and B. Vlahovic, “Electron states of semiconductor quantum ring with geometry and size variations,” Mol. Simulat. 31, 779–785 (2005).
[CrossRef]

Forbes, D. V.

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

Forchel, A.

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Forste, A.

M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
[CrossRef]

Franchi, S.

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

Frigeri, P.

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

Fry, P. W.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Fu, K.

X.-F. Yang, K. Fu, W.-L. Xu, and Y. Fu, “Strain effect in determining the geometric shape of self-assembled quantum dot,” J. Phys. D: Appl. Phys. 42, 125414 (2009).
[CrossRef]

Fu, Y.

X.-F. Yang, K. Fu, W.-L. Xu, and Y. Fu, “Strain effect in determining the geometric shape of self-assembled quantum dot,” J. Phys. D: Appl. Phys. 42, 125414 (2009).
[CrossRef]

X.-F. Yang, X.-S. Chen, W. Lu, and Y. Fu, “Effects of shape and strain distribution of quantum dots on optical transmission in the quantum dot infrared photodetector,” Nanoscale Res. Lett. 3, 534–539 (2008).
[CrossRef]

Fuchs, B.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999).
[CrossRef]

Fugito, K.

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

Garcia-Linares, P.

A. Luque, A. Marti, E. Antolin, and P. Garcia-Linares, “Intraband absorption for normal illumination in quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 94, 2032–2035 (2010).
[CrossRef]

Garg, A.

Geiger, M.

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Gerthsen, D.

M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
[CrossRef]

Ghosh, S.

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum dot optoelectronic devices,” Annu. Rev. Mater. Res. 34, 1–40 (2004).
[CrossRef]

Gil, B.

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi C 2, 826–832 (2005).
[CrossRef]

Goddard, L. L.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 μm GaInNAsSb lasers,” IEEE J. Sel. Top Quantum Electron. 11, 1089–1098 (2005).
[CrossRef]

S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003).
[CrossRef]

Golmohammadi, S.

Goodnough, T. J.

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

Grandjean, N.

D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006).
[CrossRef]

Grilli, E.

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

Groger, R.

M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
[CrossRef]

Groom, K. M.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Grundmann, M.

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot laser,” Appl. Phys. Lett. 78, 1207–1209 (2001).
[CrossRef]

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained QDs modeled by 8-band k·ptheory,” Phys. Rev. B 59, 5688–5701 (1999).
[CrossRef]

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Gullis, A. G.

A. G. Gullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski–Krastanow transition and epitaxial island growth,” Phys. Rev. B 66, 81305–81401 (2002).
[CrossRef]

T. Walther, A. G. Gullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86, 2381–2384 (2001).
[CrossRef]

Gurioli, M.

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

Guzzi, M.

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

Ha, W.

S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003).
[CrossRef]

Haeger, D. A.

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

Hains, C. P.

N. Nuntawong, S. Birudavolu, C. P. Hains, H. Xu, and D. L. Huffaker, “Effect of strain compensation in staked 1.3 μm InAs/GaS quantum dot active regions grown by metallographic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).
[CrossRef]

Harris, J. S.

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 μm GaInNAsSb lasers,” IEEE J. Sel. Top Quantum Electron. 11, 1089–1098 (2005).
[CrossRef]

S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003).
[CrossRef]

Harrison, C.

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

Hasbullah, F.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Helfrich, M.

M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
[CrossRef]

Hill, G.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Hogg, R. A.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Hopkinson, M.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

A. G. Gullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski–Krastanow transition and epitaxial island growth,” Phys. Rev. B 66, 81305–81401 (2002).
[CrossRef]

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of WL states on the gain-current characteristics of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

T. Walther, A. G. Gullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86, 2381–2384 (2001).
[CrossRef]

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Hsu, P. S.

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

Huffaker, D. L.

N. Nuntawong, J. Tatebayashi, P. S. Wong, and D. L. Huffaker, “Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structure,” Appl. Phys. Lett. 90, 163121 (2007).
[CrossRef]

N. Nuntawong, S. Birudavolu, C. P. Hains, H. Xu, and D. L. Huffaker, “Effect of strain compensation in staked 1.3 μm InAs/GaS quantum dot active regions grown by metallographic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).
[CrossRef]

Ilegems, M.

D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006).
[CrossRef]

Imani, M.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[CrossRef]

Ishida, S.

K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett. 76, 3212–3214 (2000).
[CrossRef]

Itskevich, I. E.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Jamieson, T.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[CrossRef]

Jamil, M.

Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, “Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 310, 2320–2325 (2008).
[CrossRef]

Jantsch, W.

V.-T. Rangel-Kuoppa, G. Chen, and W. Jantsch, “Electrical study of self-assembled Ge quantum dots in p-type silicon. Temperature dependent capacitance voltage and DLTS study,” Solid State Phenom. 178–179, 67–71 (2011).
[CrossRef]

Jeon, M.

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

Jeong, W. G.

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

Jiang, J.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Jim, C. Y.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Jorge, P. A. S.

Jung, H.-S.

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Kang, S.-K.

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

Kanjanachuchai, S.

S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot integration in heterostructure solar cell,” Sol. Energy Mater. Sol. Cells 90, 2968–2974 (2006).
[CrossRef]

Kanshar, M.

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

Kar, A.

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Karimkhani, A.

Kim, G. H.

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

Kim, J. S.

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

Kim, N. H.

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

Kim, S. G.

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

Kirch, J.

J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009).
[CrossRef]

Krizhanovskaya, N. A.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Kruger, M.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Kuech, T. F.

T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
[CrossRef]

J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009).
[CrossRef]

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

Kuhn, K. J.

K. J. Kuhn, G. U. Lyengar, and S. Yee, “Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells,” J. Appl. Phys. 70, 5010–5017 (1991).
[CrossRef]

Kurihara, N.

R. Oshima, N. Kurihara, H. Shigekawa, and Y. Okada, “Electronic states of self-organized InGaAs quantum dots on GaAs (311) B studied by conductive scanning probe microscopy,” Phys. E 21, 414–418 (2004).
[CrossRef]

Kwon, H. K.

S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).
[CrossRef]

Lang, C.

C. Lang, D. Nguen-Manh, and D. J. H. Cochayne, “Modelling Ge/Si quantum dot using finite element analysis and atomistic simulation,” J. Phys. Conf. Ser. 29, 141–144 (2006).
[CrossRef]

Ledentsov, N. N.

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot laser,” Appl. Phys. Lett. 78, 1207–1209 (2001).
[CrossRef]

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Lee, C. P.

Y. Li, O. Voskoboynikov, C. P. Lee, and S. M. Sze, “Computer simulation of electron energy level for different shape InAs/GaAs semiconductor quantum dots,” Comput. Phys. Commun. 141, 66–72 (2001).
[CrossRef]

Lee, J. I.

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

Lee, J. S.

S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).
[CrossRef]

Lee, Y.-T.

S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum well structures with Ga-and N-faces,” Jpn. J. Appl. Phys. 50, 072101 (2011).
[CrossRef]

Leem, J.-Y.

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

Leonard, D.

D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B 50, 11687–11692 (1994).
[CrossRef]

Lester, L. F.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999).
[CrossRef]

Li, R. R.

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

Li, Y.

Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E 44, 821–825 (2012).
[CrossRef]

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Y. Li, O. Voskoboynikov, C. P. Lee, and S. M. Sze, “Computer simulation of electron energy level for different shape InAs/GaAs semiconductor quantum dots,” Comput. Phys. Commun. 141, 66–72 (2001).
[CrossRef]

Liang, B. L.

B. L. Liang, Z. M. Wang, Yu. I. Mazur, and G. J. Salamo, “Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots,” Appl. Phys. Lett. 89, 243124 (2006).
[CrossRef]

Liang, S.

S. Liang and W. Xie, “Effects of the hydrogenic pressure and temperature on optical properties of a hydrogenic impurity in the disc-like quantum dot,” Physica B 406, 2224–2230 (2011).
[CrossRef]

Liew, S. L.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Lim, H.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Litvinov, D.

M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
[CrossRef]

Liu, B.

Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E 44, 821–825 (2012).
[CrossRef]

Liu, C. H.

C. H. Liu and B.-R. Xu, “Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot,” Phys. Lett. A 372, 888–892 (2008).
[CrossRef]

Liu, C.-C.

J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009).
[CrossRef]

Liu, G.

G. Liu, H. Zhao, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6, 342 (2011).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98, 151115 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19, A991–A1007 (2011).
[CrossRef]

Liu, H. Y.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Livshits, D. A.

E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Loza-Alvarez, P.

E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Lu, L.

L. Lu and W. Xie, “Impurity and exciton effects on the nonlinear optical properties of a disc-like quantum dot under a magnetic field,” Superlatt. Microstuct. 50, 40–49 (2011).
[CrossRef]

Lu, W.

X.-F. Yang, X.-S. Chen, W. Lu, and Y. Fu, “Effects of shape and strain distribution of quantum dots on optical transmission in the quantum dot infrared photodetector,” Nanoscale Res. Lett. 3, 534–539 (2008).
[CrossRef]

Luque, A.

A. Luque, A. Marti, E. Antolin, and P. Garcia-Linares, “Intraband absorption for normal illumination in quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 94, 2032–2035 (2010).
[CrossRef]

Lyapin, S. G.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Lyengar, G. U.

K. J. Kuhn, G. U. Lyengar, and S. Yee, “Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells,” J. Appl. Phys. 70, 5010–5017 (1991).
[CrossRef]

Maleyre, B.

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi C 2, 826–832 (2005).
[CrossRef]

Malloy, K. L.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999).
[CrossRef]

Marti, A.

A. Luque, A. Marti, E. Antolin, and P. Garcia-Linares, “Intraband absorption for normal illumination in quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 94, 2032–2035 (2010).
[CrossRef]

Martinelli, L.

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

Matthews, D. R.

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of WL states on the gain-current characteristics of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

Mawst, L. J.

G. Liu, H. Zhao, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6, 342 (2011).
[CrossRef]

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
[CrossRef]

J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009).
[CrossRef]

N. Tansua and L. J. Mawst, “Current injection efficiency of InGaAsN quantum well lasers,” J. Appl. Phys. 97, 054502 (2005).
[CrossRef]

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” J. Phys. 16, S3277–S3318 (2004).
[CrossRef]

Mayeh, M.

Mazur, Yu. I.

B. L. Liang, Z. M. Wang, Yu. I. Mazur, and G. J. Salamo, “Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots,” Appl. Phys. Lett. 89, 243124 (2006).
[CrossRef]

Melikian, G.

I. Filikhin, E. Deyneka, G. Melikian, and B. Vlahovic, “Electron states of semiconductor quantum ring with geometry and size variations,” Mol. Simulat. 31, 779–785 (2005).
[CrossRef]

Melnik, R. V. N.

R. V. N. Melnik and K. N. Zotsenko, “Finite element analysis of coupled electronic states in quantum dot nanostructures,” Model. Simul. Mat. Sci. Eng. 12, 465–477 (2004).
[CrossRef]

R. V. N. Melnik and M. Willatzen, “Modelling coupled motion of electrons in quantum dots with wetting layers,” in Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems (NSTI, 2002), pp. 506–509.

Mi, K.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Migliorato, M. A.

A. G. Gullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski–Krastanow transition and epitaxial island growth,” Phys. Rev. B 66, 81305–81401 (2002).
[CrossRef]

Modak, P.

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

Moon, Y. T.

S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).
[CrossRef]

Moravvej-Farsh, M. K.

Mousazadeh, Z.

G. Rezaei, Z. Mousazadeh, and B. Veseghi, “Nonlinear optical properties of a two dimensional elliptic quantum dot,” Physica E 42, 1477–1481 (2010).
[CrossRef]

Mowbray, D. J.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Musikhin, Y. G.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Nakamura, S.

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

Nealley, P. F.

J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009).
[CrossRef]

Newell, T. C.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999).
[CrossRef]

Nguen-Manh, D.

C. Lang, D. Nguen-Manh, and D. J. H. Cochayne, “Modelling Ge/Si quantum dot using finite element analysis and atomistic simulation,” J. Phys. Conf. Ser. 29, 141–144 (2006).
[CrossRef]

Niyamakom, P.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Noh, S. K.

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

Norris, D. J.

A. G. Gullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski–Krastanow transition and epitaxial island growth,” Phys. Rev. B 66, 81305–81401 (2002).
[CrossRef]

T. Walther, A. G. Gullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86, 2381–2384 (2001).
[CrossRef]

Nuntawong, N.

N. Nuntawong, J. Tatebayashi, P. S. Wong, and D. L. Huffaker, “Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structure,” Appl. Phys. Lett. 90, 163121 (2007).
[CrossRef]

N. Nuntawong, S. Birudavolu, C. P. Hains, H. Xu, and D. L. Huffaker, “Effect of strain compensation in staked 1.3 μm InAs/GaS quantum dot active regions grown by metallographic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).
[CrossRef]

O’Reilly, E. P.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

O’Sullivan, T.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Ohnesorge, B.

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Okada, Y.

R. Oshima, N. Kurihara, H. Shigekawa, and Y. Okada, “Electronic states of self-organized InGaAs quantum dots on GaAs (311) B studied by conductive scanning probe microscopy,” Phys. E 21, 414–418 (2004).
[CrossRef]

Oshima, R.

R. Oshima, N. Kurihara, H. Shigekawa, and Y. Okada, “Electronic states of self-organized InGaAs quantum dots on GaAs (311) B studied by conductive scanning probe microscopy,” Phys. E 21, 414–418 (2004).
[CrossRef]

Panyakeow, S.

S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot integration in heterostructure solar cell,” Sol. Energy Mater. Sol. Cells 90, 2968–2974 (2006).
[CrossRef]

Park, J.

S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum well structures with Ga-and N-faces,” Jpn. J. Appl. Phys. 50, 072101 (2011).
[CrossRef]

Park, J. H.

G. Liu, H. Zhao, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6, 342 (2011).
[CrossRef]

J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009).
[CrossRef]

Park, J. S.

S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).
[CrossRef]

Park, S. H.

S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).
[CrossRef]

Park, S.-H.

S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum well structures with Ga-and N-faces,” Jpn. J. Appl. Phys. 50, 072101 (2011).
[CrossRef]

Petroff, P. M.

D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B 50, 11687–11692 (1994).
[CrossRef]

Petrova, D.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[CrossRef]

Pilkuhn, M. H.

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Pocock, R.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[CrossRef]

Polyakov, N. K.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Pond, K.

D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B 50, 11687–11692 (1994).
[CrossRef]

Poplawsky, J. D.

Rafailov, E. U.

E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Ramamurthy, P.

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

Rangel-Kuoppa, V.-T.

V.-T. Rangel-Kuoppa, G. Chen, and W. Jantsch, “Electrical study of self-assembled Ge quantum dots in p-type silicon. Temperature dependent capacitance voltage and DLTS study,” Solid State Phenom. 178–179, 67–71 (2011).
[CrossRef]

Rasooli Saghai, H.

Rauscher, F.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Ray, S. K.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Razeghi, M.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Register, R. A.

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

Reinhardt, K.

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Rezaei, G.

G. Rezaei, Z. Mousazadeh, and B. Veseghi, “Nonlinear optical properties of a two dimensional elliptic quantum dot,” Physica E 42, 1477–1481 (2010).
[CrossRef]

M. R. K. Vahdani and G. Rezaei, “Intersubband optical properties absorption coefficients and refractive index changes in a parabolic cylinder quantum dot,” Phys. Lett. A 374, 637–643 (2010).
[CrossRef]

M. R. K. Vahdani and G. Rezaei, “Linear and nonlinear optical properties of a hydrogen donor in lens-shaped quantum dots,” Phys. Lett. A 373, 3079–3084 (2009).
[CrossRef]

M. Barati, G. Rezaei, and M. R. K. Vahdani, “Binding energy of a hydrogenic donor impurity in an ellipsoidal finite-potential quantum dot,” Phys. Status Solidi B 244, 2605–2610 (2007).
[CrossRef]

Ribbat, C.

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot laser,” Appl. Phys. Lett. 78, 1207–1209 (2001).
[CrossRef]

Rostami, A.

Ruffenach, S.

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi C 2, 826–832 (2005).
[CrossRef]

Sadoogi, N.

Salamo, G. J.

B. L. Liang, Z. M. Wang, Yu. I. Mazur, and G. J. Salamo, “Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots,” Appl. Phys. Lett. 89, 243124 (2006).
[CrossRef]

Samsonenko, Y. B.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Sanguinetti, S.

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

Santos, J. L.

Sarmiento, T.

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

Schaadt, D. M.

M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
[CrossRef]

Scherf, U.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Schimmel, T.

M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
[CrossRef]

Schliwa, A.

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in InxGa1−xN/GaN quantum dots using an eight-band k·p model,” Phys. Rev. Lett. 74, 155322 (2006).
[CrossRef]

Schmidt, M. C.

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

Scholz, F.

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Schweizer, H.

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

Seddik, A. D.

A. D. Seddik and I. Zorkani, “Optical properties of a magneto-donor in a quantum dot,” Phys. E 28, 339–346 (2005).
[CrossRef]

Seifalian, A. M.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[CrossRef]

Sellin, R. L.

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot laser,” Appl. Phys. Lett. 78, 1207–1209 (2001).
[CrossRef]

Shigekawa, H.

R. Oshima, N. Kurihara, H. Shigekawa, and Y. Okada, “Electronic states of self-organized InGaAs quantum dots on GaAs (311) B studied by conductive scanning probe microscopy,” Phys. E 21, 414–418 (2004).
[CrossRef]

Sibbett, W.

E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Sills, T.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Simeonov, D.

D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006).
[CrossRef]

Skolnick, M. S.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Smowton, P. M.

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of WL states on the gain-current characteristics of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

Snee, P.

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Sokolovskii, G. S.

E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Someya, T.

K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett. 76, 3212–3214 (2000).
[CrossRef]

Speck, J. S.

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

Stevens, B.

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

Stier, O.

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained QDs modeled by 8-band k·ptheory,” Phys. Rev. B 59, 5688–5701 (1999).
[CrossRef]

Stiff-Roberts, A. D.

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum dot optoelectronic devices,” Annu. Rev. Mater. Res. 34, 1–40 (2004).
[CrossRef]

Stintz, A.

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999).
[CrossRef]

Stroscio, M. A.

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Summers, H. D.

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of WL states on the gain-current characteristics of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

Sun, K.

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Suraprapapich, S.

S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot integration in heterostructure solar cell,” Sol. Energy Mater. Sol. Cells 90, 2968–2974 (2006).
[CrossRef]

Sze, S. M.

Y. Li, O. Voskoboynikov, C. P. Lee, and S. M. Sze, “Computer simulation of electron energy level for different shape InAs/GaAs semiconductor quantum dots,” Comput. Phys. Commun. 141, 66–72 (2001).
[CrossRef]

Tachibana, K.

K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett. 76, 3212–3214 (2000).
[CrossRef]

Tansu, N.

G. Liu, H. Zhao, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6, 342 (2011).
[CrossRef]

J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-GaN quantum wells laser active region in mid-and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98, 171111 (2011).
[CrossRef]

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110, 113110 (2011).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98, 151115 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19, A991–A1007 (2011).
[CrossRef]

H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for laser and light emitting diodes,” IEEE J. Quantum Electron. 45, 66–78 (2009).
[CrossRef]

Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, “Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 310, 2320–2325 (2008).
[CrossRef]

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” J. Phys. 16, S3277–S3318 (2004).
[CrossRef]

Tansua, N.

N. Tansua and L. J. Mawst, “Current injection efficiency of InGaAsN quantum well lasers,” J. Appl. Phys. 97, 054502 (2005).
[CrossRef]

Tatebayashi, J.

N. Nuntawong, J. Tatebayashi, P. S. Wong, and D. L. Huffaker, “Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structure,” Appl. Phys. Lett. 90, 163121 (2007).
[CrossRef]

Teleb, H.

Thainoi, S.

S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot integration in heterostructure solar cell,” Sol. Energy Mater. Sol. Cells 90, 2968–2974 (2006).
[CrossRef]

Thompson, M. E.

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

Tidrow, M. Z.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Tonkikh, A. A.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Trevisi, G.

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

Trojan, I. A.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Tsao, S.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Tsatsul’nikov, A. F.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Ustinov, V. M.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Vahdani, M. R. K.

M. R. K. Vahdani and G. Rezaei, “Intersubband optical properties absorption coefficients and refractive index changes in a parabolic cylinder quantum dot,” Phys. Lett. A 374, 637–643 (2010).
[CrossRef]

M. R. K. Vahdani and G. Rezaei, “Linear and nonlinear optical properties of a hydrogen donor in lens-shaped quantum dots,” Phys. Lett. A 373, 3079–3084 (2009).
[CrossRef]

M. Barati, G. Rezaei, and M. R. K. Vahdani, “Binding energy of a hydrogenic donor impurity in an ellipsoidal finite-potential quantum dot,” Phys. Status Solidi B 244, 2605–2610 (2007).
[CrossRef]

Vasudev, M.

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Veit, C.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Veseghi, B.

G. Rezaei, Z. Mousazadeh, and B. Veseghi, “Nonlinear optical properties of a two dimensional elliptic quantum dot,” Physica E 42, 1477–1481 (2010).
[CrossRef]

Vlahovic, B.

I. Filikhin, E. Deyneka, G. Melikian, and B. Vlahovic, “Electron states of semiconductor quantum ring with geometry and size variations,” Mol. Simulat. 31, 779–785 (2005).
[CrossRef]

Voskoboynikov, O.

Y. Li, O. Voskoboynikov, C. P. Lee, and S. M. Sze, “Computer simulation of electron energy level for different shape InAs/GaAs semiconductor quantum dots,” Comput. Phys. Commun. 141, 66–72 (2001).
[CrossRef]

Walther, T.

A. G. Gullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski–Krastanow transition and epitaxial island growth,” Phys. Rev. B 66, 81305–81401 (2002).
[CrossRef]

T. Walther, A. G. Gullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86, 2381–2384 (2001).
[CrossRef]

Wang, Y.-X.

Wang, Z. M.

B. L. Liang, Z. M. Wang, Yu. I. Mazur, and G. J. Salamo, “Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots,” Appl. Phys. Lett. 89, 243124 (2006).
[CrossRef]

Werner, P.

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

Willatzen, M.

R. V. N. Melnik and M. Willatzen, “Modelling coupled motion of electrons in quantum dots with wetting layers,” in Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems (NSTI, 2002), pp. 506–509.

Wilson, L. R.

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

Winkelnkemper, M.

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in InxGa1−xN/GaN quantum dots using an eight-band k·p model,” Phys. Rev. Lett. 74, 155322 (2006).
[CrossRef]

Wistey, M. A.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 μm GaInNAsSb lasers,” IEEE J. Sel. Top Quantum Electron. 11, 1089–1098 (2005).
[CrossRef]

S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003).
[CrossRef]

Wong, P. S.

N. Nuntawong, J. Tatebayashi, P. S. Wong, and D. L. Huffaker, “Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structure,” Appl. Phys. Lett. 90, 163121 (2007).
[CrossRef]

Xie, W.

L. Lu and W. Xie, “Impurity and exciton effects on the nonlinear optical properties of a disc-like quantum dot under a magnetic field,” Superlatt. Microstuct. 50, 40–49 (2011).
[CrossRef]

W. Xie, “A study of nonlinear optical properties of a negative donor quantum dot,” Opt. Commun. 284, 4756–4760(2011).
[CrossRef]

S. Liang and W. Xie, “Effects of the hydrogenic pressure and temperature on optical properties of a hydrogenic impurity in the disc-like quantum dot,” Physica B 406, 2224–2230 (2011).
[CrossRef]

W. Xie, “Laser radiation effects on optical absorptions and refractive index in a quantum dot,” Opt. Commun. 283, 3703–3706 (2010).
[CrossRef]

Xie, Z.

Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E 44, 821–825 (2012).
[CrossRef]

Xu, B.-R.

C. H. Liu and B.-R. Xu, “Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot,” Phys. Lett. A 372, 888–892 (2008).
[CrossRef]

Xu, H.

N. Nuntawong, S. Birudavolu, C. P. Hains, H. Xu, and D. L. Huffaker, “Effect of strain compensation in staked 1.3 μm InAs/GaS quantum dot active regions grown by metallographic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).
[CrossRef]

Xu, W.-L.

X.-F. Yang, K. Fu, W.-L. Xu, and Y. Fu, “Strain effect in determining the geometric shape of self-assembled quantum dot,” J. Phys. D: Appl. Phys. 42, 125414 (2009).
[CrossRef]

Yang, J.

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Yang, X.-F.

X.-F. Yang, K. Fu, W.-L. Xu, and Y. Fu, “Strain effect in determining the geometric shape of self-assembled quantum dot,” J. Phys. D: Appl. Phys. 42, 125414 (2009).
[CrossRef]

X.-F. Yang, X.-S. Chen, W. Lu, and Y. Fu, “Effects of shape and strain distribution of quantum dots on optical transmission in the quantum dot infrared photodetector,” Nanoscale Res. Lett. 3, 534–539 (2008).
[CrossRef]

Yee, S.

K. J. Kuhn, G. U. Lyengar, and S. Yee, “Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells,” J. Appl. Phys. 70, 5010–5017 (1991).
[CrossRef]

Yeh, J.-Y.

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” J. Phys. 16, S3277–S3318 (2004).
[CrossRef]

Yilmaz, S.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Young, J. D.

Yu, Ph. W.

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

Yuen, H. B.

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 μm GaInNAsSb lasers,” IEEE J. Sel. Top Quantum Electron. 11, 1089–1098 (2005).
[CrossRef]

S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003).
[CrossRef]

Zhang, F.

Zhang, J.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98, 151115 (2011).
[CrossRef]

J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-GaN quantum wells laser active region in mid-and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98, 171111 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19, A991–A1007 (2011).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110, 113110 (2011).
[CrossRef]

Zhang, L.

Zhang, R.

Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E 44, 821–825 (2012).
[CrossRef]

Zhang, W.

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

Zhao, H.

G. Liu, H. Zhao, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6, 342 (2011).
[CrossRef]

J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-GaN quantum wells laser active region in mid-and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98, 171111 (2011).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98, 151115 (2011).
[CrossRef]

H. Zhao, G. Liu, J. Zhang, J. D. Poplawsky, V. Dierolf, and N. Tansu, “Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells,” Opt. Express 19, A991–A1007 (2011).
[CrossRef]

H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for laser and light emitting diodes,” IEEE J. Quantum Electron. 45, 66–78 (2009).
[CrossRef]

Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, “Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 310, 2320–2325 (2008).
[CrossRef]

Zheng, Y.

Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E 44, 821–825 (2012).
[CrossRef]

Zhou, Y.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Zhukov, A. E.

E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

Zimmermann, B.

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

Zorkani, I.

A. D. Seddik and I. Zorkani, “Optical properties of a magneto-donor in a quantum dot,” Phys. E 28, 339–346 (2005).
[CrossRef]

Zotsenko, K. N.

R. V. N. Melnik and K. N. Zotsenko, “Finite element analysis of coupled electronic states in quantum dot nanostructures,” Model. Simul. Mat. Sci. Eng. 12, 465–477 (2004).
[CrossRef]

Annu. Rev. Mater. Res. (1)

P. Bhattacharya, S. Ghosh, and A. D. Stiff-Roberts, “Quantum dot optoelectronic devices,” Annu. Rev. Mater. Res. 34, 1–40 (2004).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (13)

J. H. Park, J. Kirch, L. J. Mawst, C.-C. Liu, P. F. Nealley, and T. F. Kuech, “Controlled growth of InGaAs/InGaAsP quantum dots on InP substrates employing diblock copolymer lithography,” Appl. Phys. Lett. 95, 113111 (2009).
[CrossRef]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98, 151115 (2011).
[CrossRef]

R. M. Farrell, D. A. Haeger, P. S. Hsu, M. C. Schmidt, K. Fugito, D. F. Feezell, S. P. DenBaars, J. S. Speck, and S. Nakamura, “High-power blue-violet AlGaN-cladding-free m-plane InGaN/GaN laser diodes,” Appl. Phys. Lett. 99, 171113 (2011).
[CrossRef]

J. Zhang, H. Zhao, and N. Tansu, “Large optical gain AlGaN-GaN quantum wells laser active region in mid-and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98, 171111 (2011).
[CrossRef]

N. Nuntawong, J. Tatebayashi, P. S. Wong, and D. L. Huffaker, “Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structure,” Appl. Phys. Lett. 90, 163121 (2007).
[CrossRef]

H. Y. Liu, S. L. Liew, T. Badcock, D. J. Mowbray, M. S. Skolnick, S. K. Ray, T. L. Choi, K. M. Groom, B. Stevens, F. Hasbullah, C. Y. Jim, M. Hopkinson, and R. A. Hogg, “P-doped 1.3 μm InAs/GaAs quantum-dot lasers with a low threshold current density and high differential efficiency,” Appl. Phys. Lett. 89, 073113 (2006).
[CrossRef]

R. L. Sellin, C. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, “Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot laser,” Appl. Phys. Lett. 78, 1207–1209 (2001).
[CrossRef]

J. Jiang, S. Tsao, T. O’Sullivan, W. Zhang, H. Lim, T. Sills, K. Mi, M. Razeghi, G. J. Brown, and M. Z. Tidrow, “High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 84, 2166–2168 (2004).
[CrossRef]

R. R. Li, P. D. Dapkus, M. E. Thompson, W. G. Jeong, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography,” Appl. Phys. Lett. 76, 1689–1691 (2000).
[CrossRef]

K. Tachibana, T. Someya, S. Ishida, and Y. Arakawa, “Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature,” Appl. Phys. Lett. 76, 3212–3214 (2000).
[CrossRef]

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of WL states on the gain-current characteristics of quantum-dot lasers,” Appl. Phys. Lett. 81, 4904–4906 (2002).
[CrossRef]

B. L. Liang, Z. M. Wang, Yu. I. Mazur, and G. J. Salamo, “Photoluminescence of surface InAs quantum dot stacking on multilayer buried quantum dots,” Appl. Phys. Lett. 89, 243124 (2006).
[CrossRef]

N. Nuntawong, S. Birudavolu, C. P. Hains, H. Xu, and D. L. Huffaker, “Effect of strain compensation in staked 1.3 μm InAs/GaS quantum dot active regions grown by metallographic chemical vapor deposition,” Appl. Phys. Lett. 85, 3050–3052 (2004).
[CrossRef]

Biomaterials (1)

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, and A. M. Seifalian, “Biological applications of quantum dots,” Biomaterials 28, 4717–4732 (2007).
[CrossRef]

Comput. Phys. Commun. (1)

Y. Li, O. Voskoboynikov, C. P. Lee, and S. M. Sze, “Computer simulation of electron energy level for different shape InAs/GaAs semiconductor quantum dots,” Comput. Phys. Commun. 141, 66–72 (2001).
[CrossRef]

Electron. Lett. (1)

S. R. Bank, M. A. Wistey, H. B. Yuen, L. L. Goddard, W. Ha, and J. S. Harris, “Low-threshold CW GaInNAsSb/GaAs laser at 1.49 μm,” Electron. Lett. 39, 1445–1446 (2003).
[CrossRef]

IEEE J. Quantum Electron. (3)

T. C. Newell, D. J. Bossert, A. Stintz, B. Fuchs, K. L. Malloy, and L. F. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE J. Quantum Electron. 11, 1527–1529 (1999).
[CrossRef]

H. Zhao, R. A. Arif, Y. K. Ee, and N. Tansu, “Self-consistent analysis of strain-compensated InGaN–AlGaN quantum wells for laser and light emitting diodes,” IEEE J. Quantum Electron. 45, 66–78 (2009).
[CrossRef]

J. W. Ferguson, P. Blood, P. M. Smowton, H. Bae, T. Sarmiento, J. S. Harris, N. Tansu, and L. J. Mawst, “Optical gain in GaInNAs and GaInNAsSb quantum well,” IEEE J. Quantum Electron. 47, 870–877 (2011).
[CrossRef]

IEEE J. Sel. Top Quantum Electron. (1)

S. R. Bank, L. L. Goddard, M. A. Wistey, H. B. Yuen, and J. S. Harris, “On the temperature sensitivity of 1.5 μm GaInNAsSb lasers,” IEEE J. Sel. Top Quantum Electron. 11, 1089–1098 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of femtosecond pulses over by 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023–1025 (2003).
[CrossRef]

J. Appl. Phys. (8)

K. J. Kuhn, G. U. Lyengar, and S. Yee, “Free carrier induced changes in the absorption and refractive index for intersubband optical transitions in AlxGa1−xAs/GaAs/AlxGa1−xAs quantum wells,” J. Appl. Phys. 70, 5010–5017 (1991).
[CrossRef]

N. Tansua and L. J. Mawst, “Current injection efficiency of InGaAsN quantum well lasers,” J. Appl. Phys. 97, 054502 (2005).
[CrossRef]

N. H. Kim, P. Ramamurthy, L. J. Mawst, T. F. Kuech, P. Modak, T. J. Goodnough, D. V. Forbes, and M. Kanshar, “Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1−xPx,” J. Appl. Phys. 97, 093518 (2005).
[CrossRef]

J. Zhang and N. Tansu, “Improvement in spontaneous emission rates for InGaN quantum wells on ternary InGaN substrate for light-emitting diodes,” J. Appl. Phys. 110, 113110 (2011).
[CrossRef]

D. Simeonov, E. Feltin, J. F. Carlin, R. Butte, M. Ilegems, and N. Grandjean, “Stranski–Kranstanov GaN/AlN quantum dots grown by metal organic vapor phase epitaxy,” J. Appl. Phys. 99, 083509 (2006).
[CrossRef]

J. S. Kim, Ph. W. Yu, J.-Y. Leem, M. Jeon, S. K. Noh, J. I. Lee, G. H. Kim, S.-K. Kang, J. S. Kim, and S. G. Kim, “Effects of high potential barrier on InAs quantum dots and wetting layer,” J. Appl. Phys. 91, 5055–5059 (2002).
[CrossRef]

F. Adeler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, “Optical transition and carrier relaxation in self-assembled InAs/GaAs quantum dots,” J. Appl. Phys. 80, 4019–4026 (1996).
[CrossRef]

D. Colombo, S. Sanguinetti, E. Grilli, M. Guzzi, L. Martinelli, M. Gurioli, P. Frigeri, G. Trevisi, and S. Franchi, “Efficient room temperature carrier trapping in quantum dots tailoring the wetting layer,” J. Appl. Phys. 94, 6513–6517 (2003).
[CrossRef]

J. Cryst. Growth (2)

Y.-K. Ee, H. Zhao, R. A. Arif, M. Jamil, and N. Tansu, “Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy,” J. Cryst. Growth 310, 2320–2325 (2008).
[CrossRef]

V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, “Effect of growth kinetics on the structural and optical properties of quantum dot ensemble,” J. Cryst. Growth 267, 47–59 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Phys. (1)

N. Tansu, J.-Y. Yeh, and L. J. Mawst, “Physics and characteristics of high performance 1200 nm InGaAs and 1300–1400 nm InGaAsN quantum well lasers by metal–organic chemical vapor deposition,” J. Phys. 16, S3277–S3318 (2004).
[CrossRef]

J. Phys. Conf. Ser. (1)

C. Lang, D. Nguen-Manh, and D. J. H. Cochayne, “Modelling Ge/Si quantum dot using finite element analysis and atomistic simulation,” J. Phys. Conf. Ser. 29, 141–144 (2006).
[CrossRef]

J. Phys. D (1)

T. F. Kuech and L. J. Mawst, “Nanofabrication of III-V semiconductors employing diblock copolymer lithography,” J. Phys. D 43, 183001 (2010).
[CrossRef]

J. Phys. D: Appl. Phys. (1)

X.-F. Yang, K. Fu, W.-L. Xu, and Y. Fu, “Strain effect in determining the geometric shape of self-assembled quantum dot,” J. Phys. D: Appl. Phys. 42, 125414 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S.-H. Park, D. Ahn, J. Park, and Y.-T. Lee, “Optical properties of staggered InGaN/InGaN/GaN quantum well structures with Ga-and N-faces,” Jpn. J. Appl. Phys. 50, 072101 (2011).
[CrossRef]

Microelectron. J. (1)

K. Sun, M. Vasudev, H.-S. Jung, J. Yang, A. Kar, Y. Li, K. Reinhardt, P. Snee, M. A. Stroscio, and M. Dutta, “Applications of colloidal quantum dots,” Microelectron. J. 40, 644–649 (2009).
[CrossRef]

Model. Simul. Mat. Sci. Eng. (1)

R. V. N. Melnik and K. N. Zotsenko, “Finite element analysis of coupled electronic states in quantum dot nanostructures,” Model. Simul. Mat. Sci. Eng. 12, 465–477 (2004).
[CrossRef]

Mol. Simulat. (1)

I. Filikhin, E. Deyneka, G. Melikian, and B. Vlahovic, “Electron states of semiconductor quantum ring with geometry and size variations,” Mol. Simulat. 31, 779–785 (2005).
[CrossRef]

Nanoscale Res. Lett. (3)

X.-F. Yang, X.-S. Chen, W. Lu, and Y. Fu, “Effects of shape and strain distribution of quantum dots on optical transmission in the quantum dot infrared photodetector,” Nanoscale Res. Lett. 3, 534–539 (2008).
[CrossRef]

M. Helfrich, R. Groger, A. Forste, D. Litvinov, D. Gerthsen, T. Schimmel, and D. M. Schaadt, “Investigation of pre-structured GaAs surfaces for subsequent site-selective InAs quantum dot growth,” Nanoscale Res. Lett. 6, 211 (2011).
[CrossRef]

G. Liu, H. Zhao, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6, 342 (2011).
[CrossRef]

Opt. Commun. (2)

W. Xie, “Laser radiation effects on optical absorptions and refractive index in a quantum dot,” Opt. Commun. 283, 3703–3706 (2010).
[CrossRef]

W. Xie, “A study of nonlinear optical properties of a negative donor quantum dot,” Opt. Commun. 284, 4756–4760(2011).
[CrossRef]

Opt. Express (2)

Phys. E (3)

A. D. Seddik and I. Zorkani, “Optical properties of a magneto-donor in a quantum dot,” Phys. E 28, 339–346 (2005).
[CrossRef]

M. S. Skolnick, I. E. Itskevich, P. W. Fry, D. J. Mowbray, L. R. Wilson, J. A. Barker, E. P. O’Reilly, I. A. Trojan, S. G. Lyapin, M. Hopkinson, M. Al-Khafaji, A. G. Cullis, G. Hill, and J. C. Clark, “Electronic structure of InAs/GaAs self-assembled quantum dots studied by perturbation spectroscopy,” Phys. E 6, 348–357 (2000).
[CrossRef]

R. Oshima, N. Kurihara, H. Shigekawa, and Y. Okada, “Electronic states of self-organized InGaAs quantum dots on GaAs (311) B studied by conductive scanning probe microscopy,” Phys. E 21, 414–418 (2004).
[CrossRef]

Phys. Lett. A (3)

C. H. Liu and B.-R. Xu, “Theoretical study of the optical absorption and refraction index change in a cylindrical quantum dot,” Phys. Lett. A 372, 888–892 (2008).
[CrossRef]

M. R. K. Vahdani and G. Rezaei, “Intersubband optical properties absorption coefficients and refractive index changes in a parabolic cylinder quantum dot,” Phys. Lett. A 374, 637–643 (2010).
[CrossRef]

M. R. K. Vahdani and G. Rezaei, “Linear and nonlinear optical properties of a hydrogen donor in lens-shaped quantum dots,” Phys. Lett. A 373, 3079–3084 (2009).
[CrossRef]

Phys. Rev. B (3)

D. Leonard, K. Pond, and P. M. Petroff, “Critical layer thickness for self-assembled InAs islands on GaAs,” Phys. Rev. B 50, 11687–11692 (1994).
[CrossRef]

A. G. Gullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, “Stranski–Krastanow transition and epitaxial island growth,” Phys. Rev. B 66, 81305–81401 (2002).
[CrossRef]

O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained QDs modeled by 8-band k·ptheory,” Phys. Rev. B 59, 5688–5701 (1999).
[CrossRef]

Phys. Rev. Lett. (2)

M. Winkelnkemper, A. Schliwa, and D. Bimberg, “Interrelation of structural and electronic properties in InxGa1−xN/GaN quantum dots using an eight-band k·p model,” Phys. Rev. Lett. 74, 155322 (2006).
[CrossRef]

T. Walther, A. G. Gullis, D. J. Norris, and M. Hopkinson, “Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs,” Phys. Rev. Lett. 86, 2381–2384 (2001).
[CrossRef]

Phys. Status Solidi A (1)

S. H. Park, Y. T. Moon, J. S. Lee, H. K. Kwon, J. S. Park, and D. Ahn, “Spontaneous emission rate of green strain-compensated InGaN/InGaN LEDs using InGaN substrate,” Phys. Status Solidi A 208, 195–198 (2011).
[CrossRef]

Phys. Status Solidi B (1)

M. Barati, G. Rezaei, and M. R. K. Vahdani, “Binding energy of a hydrogenic donor impurity in an ellipsoidal finite-potential quantum dot,” Phys. Status Solidi B 244, 2605–2610 (2007).
[CrossRef]

Phys. Status Solidi C (1)

S. Ruffenach, B. Maleyre, O. Briot, and B. Gil, “Growth of InN quantum dots by MOVPE,” Phys. Status Solidi C 2, 826–832 (2005).
[CrossRef]

Physica B (1)

S. Liang and W. Xie, “Effects of the hydrogenic pressure and temperature on optical properties of a hydrogenic impurity in the disc-like quantum dot,” Physica B 406, 2224–2230 (2011).
[CrossRef]

Physica E (2)

Y. Li, B. Liu, R. Zhang, Z. Xie, and Y. Zheng, “Investigation of optical properties of InGaN-InN-InGaN/GaN quantum-well in the green spectral regime,” Physica E 44, 821–825 (2012).
[CrossRef]

G. Rezaei, Z. Mousazadeh, and B. Veseghi, “Nonlinear optical properties of a two dimensional elliptic quantum dot,” Physica E 42, 1477–1481 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (3)

Y. Zhou, M. Eck, C. Veit, B. Zimmermann, F. Rauscher, P. Niyamakom, S. Yilmaz, L. Dumsch, S. Allard, U. Scherf, and M. Kruger, “Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT,” Sol. Energy Mater. Sol. Cells 95, 1232–1237 (2011).
[CrossRef]

S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow, “Quantum dot integration in heterostructure solar cell,” Sol. Energy Mater. Sol. Cells 90, 2968–2974 (2006).
[CrossRef]

A. Luque, A. Marti, E. Antolin, and P. Garcia-Linares, “Intraband absorption for normal illumination in quantum dot intermediate band solar cells,” Sol. Energy Mater. Sol. Cells 94, 2032–2035 (2010).
[CrossRef]

Solid State Phenom. (1)

V.-T. Rangel-Kuoppa, G. Chen, and W. Jantsch, “Electrical study of self-assembled Ge quantum dots in p-type silicon. Temperature dependent capacitance voltage and DLTS study,” Solid State Phenom. 178–179, 67–71 (2011).
[CrossRef]

Superlatt. Microstuct. (1)

L. Lu and W. Xie, “Impurity and exciton effects on the nonlinear optical properties of a disc-like quantum dot under a magnetic field,” Superlatt. Microstuct. 50, 40–49 (2011).
[CrossRef]

Other (4)

R. V. N. Melnik and M. Willatzen, “Modelling coupled motion of electrons in quantum dots with wetting layers,” in Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems (NSTI, 2002), pp. 506–509.

D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

S. Datta, Quantum Phenomena: Modular Series on Solid-State Devices, Vol. 8 (Addison-Wesley, 1989).

R. Boyd, Nonlinear Optics, 3rd ed. (Academic, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

Simulation area with numbered boundaries. The thickness of the WL has been set as 3 nm.

Fig. 2.
Fig. 2.

Normalized ground state (left) and first excited state (right) envelop functions for (a) and (b) r=3nm, (c) and (d) r=7nm, and (e) and (f) r=15nm.

Fig. 3.
Fig. 3.

Ground state (cubic) and first excited state (circle) energy eigenvalues against the dome radius.

Fig. 4.
Fig. 4.

Difference between ground and first excited state energies against the dome radius.

Fig. 5.
Fig. 5.

Absolute value of diagonal elements of dipole moment matrix, M11 (cube) and M22 (circle), against the dome radius.

Fig. 6.
Fig. 6.

Off-diagonal dipole moment element, M21, against the dome radius.

Fig. 7.
Fig. 7.

RLRIC versus the photon energy for various dome radii of r=12nm, r=14nm, r=16nm, r=18nm, and r=20nm.

Fig. 8.
Fig. 8.

Heights of resonant peaks of RLRIC, Δn(1)(ω=ω21)/n, versus the dome radius.

Fig. 9.
Fig. 9.

LAC versus the photon energy for various dome radii of r=12nm (solid), r=14nm (dashed), r=16nm (dotted), r=18nm (dashed–dotted), and r=20nm (dashed–dotted–dotted).

Fig. 10.
Fig. 10.

Heights of resonant peaks of LAC versus the dome radius.

Fig. 11.
Fig. 11.

Relative refractive index change due to optical rectification versus photon energy for several light intensities of I=0.1MW/cm2 (solid curves), I=0.15MW/cm2 (dashed curves), I=0.2MW/cm2 (dashed–dotted curves), and I=0.3MW/cm2 (dotted curves).

Fig. 12.
Fig. 12.

Relative refractive index change due to optical rectification at resonate frequency, Δn(2)(ω=ω21)/n, versus dome radius for various intensities.

Fig. 13.
Fig. 13.

RTRIC against the versus photon energy for several light intensities of I=0.1MW/cm2 (solid curves), I=0.15MW/cm2 (dashed curves), I=0.2MW/cm2 (dashed–dotted curves), and I=0.3MW/cm2 (dashed curves). From the right to the left, every group of curves stands for dome radius of r=12nm, r=14nm, r=16nm, r=18nm, and r=20nm.

Fig. 14.
Fig. 14.

RTRIC at resonance frequency, Δn(3)(ω=ω21)/n, versus the dome radius for various intensities.

Fig. 15.
Fig. 15.

TAC against the photon energy for several light intensities of I=0.1MW/cm2 (solid curves), I=0.15MW/cm2 (dashed curves), I=0.2MW/cm2 (dashed–dotted curves), and I=0.3MW/cm2 (dotted curves) and several dome radii. From right to left: r=12nm, r=14nm, r=16nm, r=18nm, and r=20nm.

Fig. 16.
Fig. 16.

TAC at resonant frequency α(3)(ω=ω21) versus the dome radius for various intensities.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

h28π2m*2Ψ(r⃗)+V(r⃗)Ψ(r⃗)=EΨ(r⃗),
Ψ(r⃗)=χ(r,z)Θ(φ),
1ΘdΘdφ2=l2,
mer2h8π21χl[z(1meχlz)+1rr(rmeχr)]+mer2(VE)=h28πl2,
h28π2[z(1meχlz)+1rr(rmeχlr)]+(h28π2me1r2+V)χl=Eχl,
.(cχl)+aχl+βχl=Elχl,
E˜(z,t)=E0i^ei(kzωt)+C.C,
N=1+χeff(ω)1+12χeff(ω),
Δnn=n1n=12Re(χeff(ω)n),
α=2niωc=ωμϵRIm[ϵ0χeff(ω)],
χ(1)=σε0|M21|2ω21ωiγ21,
χ0(2)=σ|M21|2ε02[(ω21ω)2+γ122]{2γ21(M22γ22M11γ11)+2(M22M11)ω212+γ212[ω21(ω21ω)γ212]},
χ(3)(ω)=σ|M21|2ε03(ω21ωiγ21)×{4|M12|2(ω21ω)2+γ212(M22M11)2(ω21iγ12)(ω21ωiγ12)}.

Metrics