Abstract

A passive millimeter-wave (mmW) sensor operating at a frequency of 77 GHz is built and characterized. The sensor is a single pixel sensor that raster scans to create an image. Optical upconversion is used to convert the incident mmW signal into an optical signal for detection. Components were picked to be representative of a single element in a distributed aperture system. The performance of the system is analyzed, and the noise equivalent temperature difference is found to be 0.5 K (for a 1 s integration time) with a diffraction limited resolution of 8mrad. Representative images are shown that demonstrate the phenomenology associated with this spectrum.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Yujiri, “Passive millimeter wave imaging,” in Microwave Symposium Digest, 2006. IEEE MTT-S International (IEEE, 2006), pp. 98–101.
  2. R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. London, Ser. A 362, 379–393 (2004).
    [CrossRef]
  3. D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).
    [CrossRef]
  4. G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
    [CrossRef]
  5. H. J. Liebe, “MPM-An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650 (1989).
    [CrossRef]
  6. J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
    [CrossRef]
  7. E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90:0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
    [CrossRef]
  8. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory 49, 1581–1592 (2001).
    [CrossRef]
  9. L. Zhang, J. Stiens, A. Elhawil, and R. Vounckx, “Multispectral illumination and image processing techniques for active millimeter-wave concealed object detection,” Appl. Opt. 47, 6357–6365 (2008).
    [CrossRef]
  10. C. Cull, D. Wikner, J. Mait, M. Mattheiss, and D. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
    [CrossRef]
  11. R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
    [CrossRef]
  12. D. A. Wikner, “Polarimetric passive millimeter-wave sensing,” Proc. SPIE 4373, 86–93 (2001).
    [CrossRef]
  13. C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech. 53, 1732–1738 (2005).
    [CrossRef]
  14. J. Macario, C. A. Schuetz, P. Yao, S. Shi, and D. W. Prather, “Development and characterization of LiNbO3 electro-optic phase modulator at 220 GHz for millimeter-wave imaging system,” Proc. SPIE 8188, 81880E (2011).
    [CrossRef]
  15. T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
    [CrossRef]
  16. J. Wenger, “Automotive radar—status and perspectives,” in Compound Semiconductor Integrated Circuit Symposium, 2005—CSIC ’05 (IEEE, 2005), 4 pp.
  17. A. Yariv, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).
  18. C. A. Schuetz, “Optical techniques for millimeter-wave detection and imaging,” Ph.D. dissertation (University of Delaware, 2007).
  19. P. M. Blanchard, A. H. Greenaway, A. R. Harvey, and K. Webster, “Coherent optical beam forming with passive millimeter-wave arrays,” J. Lightwave Technol. 17, 418–425 (1999).
    [CrossRef]
  20. E. L. Stein, “Design and development of passive millimeter-wave imaging systems,” M.S. dissertation (University of Delaware, 2009).
  21. F. Ulaby, Microwave Remote Sensing, Vol III (Artech House, 2011).
  22. R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38, 852–861 (1999).
    [CrossRef]
  23. W. N. Hardy, “Precision temperature reference for microwave radiometry (short papers),” IEEE Trans. Microw. Theory 21, 149–150 (1973).
    [CrossRef]
  24. J. P. Wilson, D. G. Mackrides, J. P. Samluk, and D. W. Prather, “Comparison of diurnal contrast changes for millimeter-wave and infrared imagery,” Appl. Opt. 49, E31–E37 (2010).
    [CrossRef]

2011 (1)

J. Macario, C. A. Schuetz, P. Yao, S. Shi, and D. W. Prather, “Development and characterization of LiNbO3 electro-optic phase modulator at 220 GHz for millimeter-wave imaging system,” Proc. SPIE 8188, 81880E (2011).
[CrossRef]

2010 (3)

2008 (1)

2007 (2)

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).
[CrossRef]

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

2005 (1)

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech. 53, 1732–1738 (2005).
[CrossRef]

2004 (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. London, Ser. A 362, 379–393 (2004).
[CrossRef]

2001 (3)

D. A. Wikner, “Polarimetric passive millimeter-wave sensing,” Proc. SPIE 4373, 86–93 (2001).
[CrossRef]

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory 49, 1581–1592 (2001).
[CrossRef]

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

1999 (3)

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

P. M. Blanchard, A. H. Greenaway, A. R. Harvey, and K. Webster, “Coherent optical beam forming with passive millimeter-wave arrays,” J. Lightwave Technol. 17, 418–425 (1999).
[CrossRef]

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38, 852–861 (1999).
[CrossRef]

1990 (1)

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90:0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

1989 (1)

H. J. Liebe, “MPM-An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650 (1989).
[CrossRef]

1973 (1)

W. N. Hardy, “Precision temperature reference for microwave radiometry (short papers),” IEEE Trans. Microw. Theory 21, 149–150 (1973).
[CrossRef]

Anderton, R. N.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Appleby, R.

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. London, Ser. A 362, 379–393 (2004).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Bishop, M.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Blanchard, P. M.

Borrill, J. R.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Brady, D.

Brooker, G.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Burroughs, E. E.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38, 852–861 (1999).
[CrossRef]

Cernicharo, J.

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

Coward, P. R.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Cull, C.

Dillon, T. E.

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[CrossRef]

Driggers, R. G.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38, 852–861 (1999).
[CrossRef]

Elhawil, A.

Falls, M. J.

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90:0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

Greenaway, A. H.

Halford, C. E.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38, 852–861 (1999).
[CrossRef]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory 49, 1581–1592 (2001).
[CrossRef]

Hardy, W. N.

W. N. Hardy, “Precision temperature reference for microwave radiometry (short papers),” IEEE Trans. Microw. Theory 21, 149–150 (1973).
[CrossRef]

Harvey, A. R.

Hennessey, R.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Lettington, A. H.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Liebe, H. J.

H. J. Liebe, “MPM-An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650 (1989).
[CrossRef]

Lobsey, C.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Macario, J.

J. Macario, C. A. Schuetz, P. Yao, S. Shi, and D. W. Prather, “Development and characterization of LiNbO3 electro-optic phase modulator at 220 GHz for millimeter-wave imaging system,” Proc. SPIE 8188, 81880E (2011).
[CrossRef]

Mackrides, D. G.

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[CrossRef]

J. P. Wilson, D. G. Mackrides, J. P. Samluk, and D. W. Prather, “Comparison of diurnal contrast changes for millimeter-wave and infrared imagery,” Appl. Opt. 49, E31–E37 (2010).
[CrossRef]

Mait, J.

Martin, R. D.

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[CrossRef]

Mattheiss, M.

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory 49, 1581–1592 (2001).
[CrossRef]

Murakowski, J.

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech. 53, 1732–1738 (2005).
[CrossRef]

Papakosta, V. P.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Pardo, J. R.

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

Prather, D. W.

J. Macario, C. A. Schuetz, P. Yao, S. Shi, and D. W. Prather, “Development and characterization of LiNbO3 electro-optic phase modulator at 220 GHz for millimeter-wave imaging system,” Proc. SPIE 8188, 81880E (2011).
[CrossRef]

J. P. Wilson, D. G. Mackrides, J. P. Samluk, and D. W. Prather, “Comparison of diurnal contrast changes for millimeter-wave and infrared imagery,” Appl. Opt. 49, E31–E37 (2010).
[CrossRef]

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[CrossRef]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech. 53, 1732–1738 (2005).
[CrossRef]

Price, S.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Pruchnic, S. J.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38, 852–861 (1999).
[CrossRef]

Robertson, D. A.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Salmon, N. A.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Samluk, J. P.

Schneider, G. J.

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech. 53, 1732–1738 (2005).
[CrossRef]

Schuetz, C. A.

J. Macario, C. A. Schuetz, P. Yao, S. Shi, and D. W. Prather, “Development and characterization of LiNbO3 electro-optic phase modulator at 220 GHz for millimeter-wave imaging system,” Proc. SPIE 8188, 81880E (2011).
[CrossRef]

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[CrossRef]

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech. 53, 1732–1738 (2005).
[CrossRef]

C. A. Schuetz, “Optical techniques for millimeter-wave detection and imaging,” Ph.D. dissertation (University of Delaware, 2007).

Serabyn, E.

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory 49, 1581–1592 (2001).
[CrossRef]

Shi, S.

J. Macario, C. A. Schuetz, P. Yao, S. Shi, and D. W. Prather, “Development and characterization of LiNbO3 electro-optic phase modulator at 220 GHz for millimeter-wave imaging system,” Proc. SPIE 8188, 81880E (2011).
[CrossRef]

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[CrossRef]

Sinclair, G. N.

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

Snider, J. B.

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90:0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

Stein, E. L.

E. L. Stein, “Design and development of passive millimeter-wave imaging systems,” M.S. dissertation (University of Delaware, 2009).

Stiens, J.

Ulaby, F.

F. Ulaby, Microwave Remote Sensing, Vol III (Artech House, 2011).

Vounckx, R.

Webb, C. M.

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38, 852–861 (1999).
[CrossRef]

Webster, K.

Wenger, J.

J. Wenger, “Automotive radar—status and perspectives,” in Compound Semiconductor Integrated Circuit Symposium, 2005—CSIC ’05 (IEEE, 2005), 4 pp.

Westwater, E. R.

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90:0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

Widzyk-Capehart, E.

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

Wikner, D.

C. Cull, D. Wikner, J. Mait, M. Mattheiss, and D. Brady, “Millimeter-wave compressive holography,” Appl. Opt. 49, E67–E82 (2010).
[CrossRef]

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).
[CrossRef]

Wikner, D. A.

D. A. Wikner, “Polarimetric passive millimeter-wave sensing,” Proc. SPIE 4373, 86–93 (2001).
[CrossRef]

Wilson, J. P.

Yao, P.

J. Macario, C. A. Schuetz, P. Yao, S. Shi, and D. W. Prather, “Development and characterization of LiNbO3 electro-optic phase modulator at 220 GHz for millimeter-wave imaging system,” Proc. SPIE 8188, 81880E (2011).
[CrossRef]

Yariv, A.

A. Yariv, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).

Yujiri, L.

L. Yujiri, “Passive millimeter wave imaging,” in Microwave Symposium Digest, 2006. IEEE MTT-S International (IEEE, 2006), pp. 98–101.

Zhang, L.

Appl. Opt. (3)

IEEE Trans. Antennas Propag. (2)

J. R. Pardo, J. Cernicharo, and E. Serabyn, “Atmospheric transmission at microwaves (ATM): an improved model for mm/submm applications,” IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).
[CrossRef]

E. R. Westwater, J. B. Snider, and M. J. Falls, “Ground-based radiometric observations of atmospheric emission and attenuation at 20.6, 31.65, and 90:0 Ghz—a comparison of measurements and theory,” IEEE Trans. Antennas Propag. 38, 1569–1580 (1990).
[CrossRef]

IEEE Trans. Microw. Theory (2)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Trans. Microw. Theory 49, 1581–1592 (2001).
[CrossRef]

W. N. Hardy, “Precision temperature reference for microwave radiometry (short papers),” IEEE Trans. Microw. Theory 21, 149–150 (1973).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (1)

C. A. Schuetz, J. Murakowski, G. J. Schneider, and D. W. Prather, “Radiometric millimeter-wave detection via optical upconversion and carrier suppression,” IEEE Trans. Microw. Theory Tech. 53, 1732–1738 (2005).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

H. J. Liebe, “MPM-An atmospheric millimeter-wave propagation model,” Int. J. Infrared Millim. Waves 10, 631–650 (1989).
[CrossRef]

J. Field Robot. (1)

G. Brooker, R. Hennessey, C. Lobsey, M. Bishop, and E. Widzyk-Capehart, “Seeing through dust and water vapor: millimeter wave radar sensors for mining applications,” J. Field Robot. 24, 527–557 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (1)

R. G. Driggers, C. M. Webb, S. J. Pruchnic, C. E. Halford, and E. E. Burroughs, “Laboratory measurement of sampled infrared imaging system performance,” Opt. Eng. 38, 852–861 (1999).
[CrossRef]

Philos. Trans. R. Soc. London, Ser. A (1)

R. Appleby, “Passive millimetre-wave imaging and how it differs from terahertz imaging,” Philos. Trans. R. Soc. London, Ser. A 362, 379–393 (2004).
[CrossRef]

Proc. SPIE (5)

D. Wikner, “Millimeter-wave propagation through a controlled dust environment,” Proc. SPIE 6548, 654803 (2007).
[CrossRef]

R. Appleby, R. N. Anderton, S. Price, N. A. Salmon, G. N. Sinclair, J. R. Borrill, P. R. Coward, V. P. Papakosta, A. H. Lettington, and D. A. Robertson, “Compact real-time (video rate) passive millimeter-wave imager,” Proc. SPIE 3703, 13–19 (1999).
[CrossRef]

D. A. Wikner, “Polarimetric passive millimeter-wave sensing,” Proc. SPIE 4373, 86–93 (2001).
[CrossRef]

J. Macario, C. A. Schuetz, P. Yao, S. Shi, and D. W. Prather, “Development and characterization of LiNbO3 electro-optic phase modulator at 220 GHz for millimeter-wave imaging system,” Proc. SPIE 8188, 81880E (2011).
[CrossRef]

T. E. Dillon, C. A. Schuetz, R. D. Martin, S. Shi, D. G. Mackrides, and D. W. Prather, “Passive millimeter wave imaging using a distributed aperture and optical upconversion,” Proc. SPIE 7837, 78370H (2010).
[CrossRef]

Other (6)

J. Wenger, “Automotive radar—status and perspectives,” in Compound Semiconductor Integrated Circuit Symposium, 2005—CSIC ’05 (IEEE, 2005), 4 pp.

A. Yariv, Photonics: Optical Electronics in Modern Communications (Oxford University, 2007).

C. A. Schuetz, “Optical techniques for millimeter-wave detection and imaging,” Ph.D. dissertation (University of Delaware, 2007).

E. L. Stein, “Design and development of passive millimeter-wave imaging systems,” M.S. dissertation (University of Delaware, 2009).

F. Ulaby, Microwave Remote Sensing, Vol III (Artech House, 2011).

L. Yujiri, “Passive millimeter wave imaging,” in Microwave Symposium Digest, 2006. IEEE MTT-S International (IEEE, 2006), pp. 98–101.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Experimental data showing radiometric sky temperature at 77 GHz as a function of angle collected in Newark, Delaware, during a summer day.

Fig. 2.
Fig. 2.

Comparison between cross section of PSFs for a distributed aperture and a filled aperture system.

Fig. 3.
Fig. 3.

Optical upconversion process schematic showing components and the frequency spectrum of the signal throughout the process.

Fig. 4.
Fig. 4.

Optical spectrum of signal propagating through modulator with and without mmW power and the output of the DWDM filter.

Fig. 5.
Fig. 5.

Schematic of mmW front end.

Fig. 6.
Fig. 6.

Deviation of Rayleigh–Jeans law from Planck’s law at 77 GHz over range of expected radiometric temperatures.

Fig. 7.
Fig. 7.

NETD measurements as a function of input laser power for (a) V channel and (b) H channel.

Fig. 8.
Fig. 8.

Response of sensor to a microwave absorber that was maintained at a variety of temperatures.

Fig. 9.
Fig. 9.

Calculated PSF of the system from edge spread measurements.

Fig. 10.
Fig. 10.

Visible image of (a) an upconversion module, (b) passive mmW sensor control electronics, and (c) an antenna mounted on a gimbal.

Fig. 11.
Fig. 11.

Images of a person (top) and metal cylinder (bottom) demonstrating postprocessing techniques.

Fig. 12.
Fig. 12.

Laptop case imaged by mmW sensor (b) without laptop and (c) with laptop.

Fig. 13.
Fig. 13.

Image of two cars with (b) vertically polarized channel and (c) horizontally polarized channel.

Fig. 14.
Fig. 14.

Image of building at (a) visible, (b) mmW, and (c) IR wavelengths.

Tables (2)

Tables Icon

Table 1. Shot Noise Parameters

Tables Icon

Table 2. Thermal Noise Measured Parameters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Eout=Einn=Jn(VmVππ)ei(ωnωm)t,
IFSB=Lmod*ηmod*Ii*Imηmod=π2Z2Vπ2,
NETDsys=NETD12++NETDn2,
Vsig=0.25*αexcess*R*IFSB*GRF*ZTIA=α*R*ηmod*Ii*Im*GRF*ZTIA,
Vsh2=2qitotBdetZtia2,
NEPshot=2qitotBdetαRηmodIiGRFW,
NETDshot=NEPshotkBRF=2qitotBdetαRηmodGRFkBRFIiK.
NETDshot=2qγBdetαRηmodGRFkBRFIiK,
NETDthermal=4TsysBRFτK,
NETDtia=iequivBdetαRηmodIiGRFkBRFW,
NETDshot=2qγBdet(αRηmodGRFkBRF)2Ii+4Tsys2BRFτ+iequiv2Bdet(αRηmodGRFkBRF)2Ii2.
NETD=Rtherm*Nrms,

Metrics