Abstract

A concave diffraction grating for integrated optics is constructed by replacing the reflective metallic part by multiple thin elements of metal, each partially reflecting the light, arranged in elliptical fashion in order to distribute the diffraction/reflection of light and provide aberration-free focusing by combining the diffraction condition and Bragg condition of these curved reflectors. It results in increasing the reflection from 39% to 73%, as simulations show.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. C. Hutley, Diffraction Gratings (Techniques of Physics: 6) (Academic, 1982).
  2. Y. C. Si and Y. Cheng, “Optical multiplexer/demultiplexer: discrete,” in WDM Technologies, Vol. II: Passive Optical Components, A. K. Dutta, N. K. Dutta, and M. Fujiwara, eds. (Academic, 2003), Chap. 3.
  3. S. V. Kartalopoulos, Introduction to DWDM Technology: Data in a Rainbow (IEEE, 2000).
  4. P. Cheben, “Wavelength dispersive planar waveguide devices: echelle and arrayed waveguide gratings,” in Optical Waveguides: From Theory to Applied Technologies, M. L. Calvo and V. Lakshminarayanan, eds. (CRC Press, 2007), Chap. 5.
  5. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
    [CrossRef]
  6. S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, “Novel architecture for design of planar lightwave interleavers,” J. Lightwave Technol. 23, 1435–1440 (2005).
    [CrossRef]
  7. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386(1988).
    [CrossRef]

2005

2004

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

1988

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386(1988).
[CrossRef]

Balakrishnan, A.

S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, “Novel architecture for design of planar lightwave interleavers,” J. Lightwave Technol. 23, 1435–1440 (2005).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Bidnyk, S.

Charbonneau, S.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Cheben, P.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

P. Cheben, “Wavelength dispersive planar waveguide devices: echelle and arrayed waveguide gratings,” in Optical Waveguides: From Theory to Applied Technologies, M. L. Calvo and V. Lakshminarayanan, eds. (CRC Press, 2007), Chap. 5.

Cheng, Y.

Y. C. Si and Y. Cheng, “Optical multiplexer/demultiplexer: discrete,” in WDM Technologies, Vol. II: Passive Optical Components, A. K. Dutta, N. K. Dutta, and M. Fujiwara, eds. (Academic, 2003), Chap. 3.

Cloutier, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Delâge, A.

S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, “Novel architecture for design of planar lightwave interleavers,” J. Lightwave Technol. 23, 1435–1440 (2005).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Dossou, K.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Erickson, L.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Gao, M.

S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, “Novel architecture for design of planar lightwave interleavers,” J. Lightwave Technol. 23, 1435–1440 (2005).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Hutley, M. C.

M. C. Hutley, Diffraction Gratings (Techniques of Physics: 6) (Academic, 1982).

Janz, S.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Kartalopoulos, S. V.

S. V. Kartalopoulos, Introduction to DWDM Technology: Data in a Rainbow (IEEE, 2000).

Krug, P. A.

S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, “Novel architecture for design of planar lightwave interleavers,” J. Lightwave Technol. 23, 1435–1440 (2005).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Lamontagne, B.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Muthukumaran, P.

Packirisamy, M.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Pearson, M.

S. Bidnyk, A. Balakrishnan, A. Delâge, M. Gao, P. A. Krug, P. Muthukumaran, and M. Pearson, “Novel architecture for design of planar lightwave interleavers,” J. Lightwave Technol. 23, 1435–1440 (2005).
[CrossRef]

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Si, Y. C.

Y. C. Si and Y. Cheng, “Optical multiplexer/demultiplexer: discrete,” in WDM Technologies, Vol. II: Passive Optical Components, A. K. Dutta, N. K. Dutta, and M. Fujiwara, eds. (Academic, 2003), Chap. 3.

Smit, M. K.

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386(1988).
[CrossRef]

Xu, D.-X.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

Electron. Lett.

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386(1988).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delâge, K. Dossou, L. Erickson, M. Gao, P. A. Krug, B. Lamontagne, M. Packirisamy, M. Pearson, and D.-X. Xu, “Planar waveguide echelle gratings in silica-on-silicon,” IEEE Photon. Technol. Lett. 16, 503–505 (2004).
[CrossRef]

J. Lightwave Technol.

Other

M. C. Hutley, Diffraction Gratings (Techniques of Physics: 6) (Academic, 1982).

Y. C. Si and Y. Cheng, “Optical multiplexer/demultiplexer: discrete,” in WDM Technologies, Vol. II: Passive Optical Components, A. K. Dutta, N. K. Dutta, and M. Fujiwara, eds. (Academic, 2003), Chap. 3.

S. V. Kartalopoulos, Introduction to DWDM Technology: Data in a Rainbow (IEEE, 2000).

P. Cheben, “Wavelength dispersive planar waveguide devices: echelle and arrayed waveguide gratings,” in Optical Waveguides: From Theory to Applied Technologies, M. L. Calvo and V. Lakshminarayanan, eds. (CRC Press, 2007), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Classical metallic concave diffraction grating (later referred as configuration 1), with optical input and outputs (wavelength channels λ1 to λn), based on the Rowland configuration. RRC is the radius of the Rowland circle on which the waveguide ends are based, and the grating is based on a circle of radius 2RRC.

Fig. 2.
Fig. 2.

Schematic of the concave diffraction grating with distributed elliptical metal lines (later referred as configuration 2). The optical input and output points A and B are the foci of the ellipses on which the grating is constructed.

Fig. 3.
Fig. 3.

Schematic of diffraction condition and Bragg condition of the proposed grating. Notations are detailed in the text.

Fig. 4.
Fig. 4.

Spatial distribution of light of a one-piece metallized CDG (configuration 1) for TE polarization (λ=600nm). Several unwanted diffraction orders are also present.

Fig. 5.
Fig. 5.

Output through different channels (thin black lines) of a one-piece metallized concave diffraction grating (configuration 1) and through the region of channels (thick black line), for TE polarization.

Fig. 6.
Fig. 6.

Spatial distribution of light of an elliptical distributed metallic line diffraction grating (configuration 2) for TE polarization (λ=600nm). Absence of any other diffraction order is noted.

Fig. 7.
Fig. 7.

Output through different channels (thin black lines) of an elliptical distributed metallic line diffraction grating (configuration 2) and through the region of channels (thick black line), for TE polarization.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2dcosφ=mλn,
a(sinα+sinβ)=Mλn.
sinθ=da,
(π2+α)+(π2φ)+θ=π.
αβ=2φ.
d=asin(φα).
mλn=2asin(φα)cosφ.
m=anλ[sin(2φα)sinα].
m=M.

Metrics