Abstract

We investigate the feasibility of transmitting high-power, ultraviolet (UV) laser pulses through long optical fibers for laser-induced-fluorescence (LIF) spectroscopy of the hydroxyl radical (OH) and nitric oxide (NO) in reacting and non-reacting flows. The fundamental transmission characteristics of nanosecond (ns)-duration laser pulses are studied at wavelengths of 283 nm (OH excitation) and 226 nm (NO excitation) for state-of-the-art, commercial UV-grade fibers. It is verified experimentally that selected fibers are capable of transmitting sufficient UV pulse energy for single-laser-shot LIF measurements. The homogeneous output-beam profile resulting from propagation through a long multimode fiber is ideal for two-dimensional planar-LIF (PLIF) imaging. A fiber-coupled UV-LIF system employing a 6 m long launch fiber is developed for probing OH and NO. Single-laser-shot OH- and NO-PLIF images are obtained in a premixed flame and in a room-temperature NO-seeded N2 jet, respectively. Effects on LIF excitation lineshapes resulting from delivering intense UV laser pulses through long fibers are also investigated. Proof-of-concept measurements demonstrated in the current work show significant promise for fiber-coupled UV-LIF spectroscopy in harsh diagnostic environments such as gas-turbine test beds.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gorden and Breach, The Netherlands, 1996).
  2. K. Kohsehoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
    [CrossRef]
  3. A. M. Wodtke, L. Huwel, H. Schluter, G. Meijer, P. Andersen, and H. Voges, “High-sensitivity detection of NO in a flame using a tunable ArF laser,” Opt. Lett. 13, 910–912 (1988).
    [CrossRef]
  4. J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
    [CrossRef]
  5. R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981).
    [CrossRef]
  6. J. M. Seitzman, G. Kychakoff, and R. K. Hanson, “Instantaneous temperature field measurements using planar laser-induced fluorescence,” Opt. Lett. 10, 439–441 (1985).
    [CrossRef]
  7. S. Kostka, S. Roy, P. J. Lakusta, T. R. Meyer, M. W. Renfro, J. R. Gord, and R. Branam, “Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH,” Appl. Opt. 48, 6332–6343(2009).
    [CrossRef]
  8. L. A. Melton, “Spectrally separated fluorescence emissions for diesel fuel droplets and vapor,” Appl. Opt. 22, 2224–2226 (1983).
    [CrossRef]
  9. C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
    [CrossRef]
  10. W. D. Kulatilaka, S. V. Naik, and R. P. Lucht, “Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows,” AIAA J. 46, 17–20 (2008).
    [CrossRef]
  11. N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011).
    [CrossRef]
  12. R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosely, “Laser-induced fluorescence of formaldehyde hot bands in flames,” Appl. Opt. 39, 3712–3715 (2000).
    [CrossRef]
  13. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, S. A. Danczyk, and T. R. Meyer, “Quasi-continuous, burst-mode laser for high-speed planar imaging,” Opt. Lett. 37, 1346–1348 (2012).
    [CrossRef]
  14. W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
    [CrossRef]
  15. P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
    [CrossRef]
  16. A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
    [CrossRef]
  17. P. Karlitschek, F. Lewitzka, U. Bunting, M. Niederkruger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B 67, 497–504 (1998).
    [CrossRef]
  18. Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004).
    [CrossRef]
  19. G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption/fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
    [CrossRef]
  20. M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption/fluorescence combustion diagnostics,” Combust. Sci. Technol. 50, 307–322 (1986).
    [CrossRef]
  21. W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011).
    [CrossRef]
  22. F. Loccisano, A. Yalin, S. Joshi, I. Franka, Z. Yin, and W. Lempert, “Fiber coupled ultraviolet planar laser induced fluorescence of OH radical,” AIAA paper 2012-1964 (2012).
  23. R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
    [CrossRef]
  24. U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
    [CrossRef]
  25. R. Abd-Allah, “Solarization behaviour of manganese-containing glass: an experimental and analytical study,” Mediterranean Archaeology and Archaeometry 9, 37–53 (2009).
  26. R. M. Wood, Laser-Induced Damage of Optical Materials(Institute of Physics, 1986).
  27. K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999).
    [CrossRef]
  28. M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
    [CrossRef]
  29. G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: Dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
    [CrossRef]
  30. U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
    [CrossRef]
  31. R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
    [CrossRef]
  32. P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
    [CrossRef]
  33. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
    [CrossRef]
  34. ISO11146-1, “Lasers and laser-related equipment—test methods for laser beam widths, divergence angles and beam propagation ratios (International standard for beam quality measurement).” (International Organization for Standardization, 2005).
  35. M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–32 (1991).
    [CrossRef]
  36. Y. Matsuura, T. Yamamoto, and M. Miyagi, “Delivery of F2-excimer laser light by aluminum hollow fibers,” Opt. Express 6, 257–261 (2000).
    [CrossRef]
  37. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3145 (1985).
    [CrossRef]
  38. X. Zhu, A. Schulzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18, 7506–7520 (2010).
    [CrossRef]
  39. G. P. Agrawal, Nonlinear Fiber Optics3rd Ed (Academic, 2001).
  40. D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546–550 (1998).
    [CrossRef]
  41. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
    [CrossRef]
  42. K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
    [CrossRef]
  43. R. V. Ravikrishna, C. S. Cooper, and N. M. Laurendeau, “Comparison of saturated and linear laser-induced fluorescence measurements of nitric oxide in counterflow diffusion flames,” Combust. Flame 117, 810–820 (1999).
    [CrossRef]
  44. M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
    [CrossRef]
  45. R. Pini, R. Salimbeni, and M. Vannini, “Optical fiber transmission of high power excimer laser radiation,” Appl. Opt. 26, 4185–4189 (1987).
    [CrossRef]
  46. R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31(1987).
    [CrossRef]
  47. Y. Itoh, K. Kunitomo, M. Obara, and T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956–2961 (1983).
    [CrossRef]
  48. M. Campbell, R. Zheng, and K. W. D. Ledingham, “An investigation into the suitability of all-silica UV fibres for use in pulsed laser analysis techniques,” Meas. Sci. Technol. 5, 726–730 (1994).
    [CrossRef]
  49. C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
    [CrossRef]

2012 (1)

2011 (2)

2010 (2)

X. Zhu, A. Schulzgen, H. Li, H. Wei, J. V. Moloney, and N. Peyghambarian, “Coherent beam transformations using multimode waveguides,” Opt. Express 18, 7506–7520 (2010).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

2009 (3)

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

R. Abd-Allah, “Solarization behaviour of manganese-containing glass: an experimental and analytical study,” Mediterranean Archaeology and Archaeometry 9, 37–53 (2009).

S. Kostka, S. Roy, P. J. Lakusta, T. R. Meyer, M. W. Renfro, J. R. Gord, and R. Branam, “Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH,” Appl. Opt. 48, 6332–6343(2009).
[CrossRef]

2008 (1)

W. D. Kulatilaka, S. V. Naik, and R. P. Lucht, “Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows,” AIAA J. 46, 17–20 (2008).
[CrossRef]

2004 (2)

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004).
[CrossRef]

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

2003 (2)

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

2000 (2)

1999 (2)

R. V. Ravikrishna, C. S. Cooper, and N. M. Laurendeau, “Comparison of saturated and linear laser-induced fluorescence measurements of nitric oxide in counterflow diffusion flames,” Combust. Flame 117, 810–820 (1999).
[CrossRef]

K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999).
[CrossRef]

1998 (3)

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

P. Karlitschek, F. Lewitzka, U. Bunting, M. Niederkruger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B 67, 497–504 (1998).
[CrossRef]

D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546–550 (1998).
[CrossRef]

1997 (1)

K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
[CrossRef]

1996 (2)

W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

1995 (1)

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

1994 (2)

K. Kohsehoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

M. Campbell, R. Zheng, and K. W. D. Ledingham, “An investigation into the suitability of all-silica UV fibres for use in pulsed laser analysis techniques,” Meas. Sci. Technol. 5, 726–730 (1994).
[CrossRef]

1992 (2)

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: Dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

1991 (2)

M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–32 (1991).
[CrossRef]

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[CrossRef]

1989 (1)

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

1988 (3)

1987 (2)

R. Pini, R. Salimbeni, and M. Vannini, “Optical fiber transmission of high power excimer laser radiation,” Appl. Opt. 26, 4185–4189 (1987).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31(1987).
[CrossRef]

1986 (1)

M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption/fluorescence combustion diagnostics,” Combust. Sci. Technol. 50, 307–322 (1986).
[CrossRef]

1985 (2)

1983 (3)

1981 (1)

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Abd-Allah, R.

R. Abd-Allah, “Solarization behaviour of manganese-containing glass: an experimental and analytical study,” Mediterranean Archaeology and Archaeometry 9, 37–53 (2009).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics3rd Ed (Academic, 2001).

Allison, S. W.

Andersen, P.

Berg, P. A.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Bhuiyan, A. H.

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

Blades, M. W.

K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
[CrossRef]

Boechat, A. A. P.

Branam, R.

Brimacombe, R. K.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31(1987).
[CrossRef]

Bublitz, J.

W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

Bunting, U.

P. Karlitschek, F. Lewitzka, U. Bunting, M. Niederkruger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B 67, 497–504 (1998).
[CrossRef]

Campbell, M.

M. Campbell, R. Zheng, and K. W. D. Ledingham, “An investigation into the suitability of all-silica UV fibres for use in pulsed laser analysis techniques,” Meas. Sci. Technol. 5, 726–730 (1994).
[CrossRef]

Cattolica, R.

Cooper, C. S.

R. V. Ravikrishna, C. S. Cooper, and N. M. Laurendeau, “Comparison of saturated and linear laser-induced fluorescence measurements of nitric oxide in counterflow diffusion flames,” Combust. Flame 117, 810–820 (1999).
[CrossRef]

Crosely, D. R.

Crosley, D. R.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

Danczyk, S. A.

Danehy, P. M.

Delmdahl, R. F.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

Dickinson, M. R.

C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
[CrossRef]

Dietz, H.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

Dressel, M.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: Dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gorden and Breach, The Netherlands, 1996).

Fabian, H.

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

Fang, Q.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004).
[CrossRef]

Fasold, G.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Franka, I.

F. Loccisano, A. Yalin, S. Joshi, I. Franka, Z. Yin, and W. Lempert, “Fiber coupled ultraviolet planar laser induced fluorescence of OH radical,” AIAA paper 2012-1964 (2012).

Fujioka, T.

Y. Itoh, K. Kunitomo, M. Obara, and T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956–2961 (1983).
[CrossRef]

Gillies, G. T.

Gord, J. R.

Greek, L. S.

K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
[CrossRef]

Grzesik, U.

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

Hack, H.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: Dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

Hall, D. R.

Hanson, R. K.

Harrington, J. E.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Haynes, C. A.

K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
[CrossRef]

Hillrichs, G.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: Dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

Hirano, M.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

Hosono, H.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

Hsu, P. S.

W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

Huettel, S.

K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
[CrossRef]

Hulka, J. R.

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

Huwel, L.

Ikushima, A. J.

Itoh, Y.

Y. Itoh, K. Kunitomo, M. Obara, and T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956–2961 (1983).
[CrossRef]

Ivey, C. B.

Jeffries, J. B.

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosely, “Laser-induced fluorescence of formaldehyde hot bands in flames,” Appl. Opt. 39, 3712–3715 (2000).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Jiang, N.

Jo, J. A.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004).
[CrossRef]

Johnston, T. J.

M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–32 (1991).
[CrossRef]

Jones, G. W.

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

Jones, J. D. C.

Joshi, S.

F. Loccisano, A. Yalin, S. Joshi, I. Franka, Z. Yin, and W. Lempert, “Fiber coupled ultraviolet planar laser induced fluorescence of OH radical,” AIAA paper 2012-1964 (2012).

Kahlke, M.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Karlitschek, P.

P. Karlitschek, F. Lewitzka, U. Bunting, M. Niederkruger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B 67, 497–504 (1998).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

Kikugawa, S.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

Kimball-Linne, M. A.

M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption/fluorescence combustion diagnostics,” Combust. Sci. Technol. 50, 307–322 (1986).
[CrossRef]

G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption/fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
[CrossRef]

King, T. A.

C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
[CrossRef]

Klein, K. F.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
[CrossRef]

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

Klein-Douwel, R. J. H.

Kohsehoinghaus, K.

K. Kohsehoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Kostka, S.

Kotani, T.

Kulatilaka, W. D.

W. D. Kulatilaka, P. S. Hsu, J. R. Gord, and S. Roy, “Point and planar ultraviolet excitation/detection of hydroxyl-radical laser-induced fluorescence through long optical fibers,” Opt. Lett. 36, 1818–1820 (2011).
[CrossRef]

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

W. D. Kulatilaka, S. V. Naik, and R. P. Lucht, “Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows,” AIAA J. 46, 17–20 (2008).
[CrossRef]

Kunitomo, K.

Y. Itoh, K. Kunitomo, M. Obara, and T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956–2961 (1983).
[CrossRef]

Kunstmann, R.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: Dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

Kychakoff, G.

Lakusta, P. J.

Laurendeau, N. M.

R. V. Ravikrishna, C. S. Cooper, and N. M. Laurendeau, “Comparison of saturated and linear laser-induced fluorescence measurements of nitric oxide in counterflow diffusion flames,” Combust. Flame 117, 810–820 (1999).
[CrossRef]

Ledingham, K. W. D.

M. Campbell, R. Zheng, and K. W. D. Ledingham, “An investigation into the suitability of all-silica UV fibres for use in pulsed laser analysis techniques,” Meas. Sci. Technol. 5, 726–730 (1994).
[CrossRef]

Lempert, W.

F. Loccisano, A. Yalin, S. Joshi, I. Franka, Z. Yin, and W. Lempert, “Fiber coupled ultraviolet planar laser induced fluorescence of OH radical,” AIAA paper 2012-1964 (2012).

Lempert, W. R.

Leopold, K. E.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31(1987).
[CrossRef]

Lewitzka, F.

P. Karlitschek, F. Lewitzka, U. Bunting, M. Niederkruger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B 67, 497–504 (1998).
[CrossRef]

Li, H.

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Loccisano, F.

F. Loccisano, A. Yalin, S. Joshi, I. Franka, Z. Yin, and W. Lempert, “Fiber coupled ultraviolet planar laser induced fluorescence of OH radical,” AIAA paper 2012-1964 (2012).

Lucht, R. P.

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

W. D. Kulatilaka, S. V. Naik, and R. P. Lucht, “Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows,” AIAA J. 46, 17–20 (2008).
[CrossRef]

Luque, J.

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosely, “Laser-induced fluorescence of formaldehyde hot bands in flames,” Appl. Opt. 39, 3712–3715 (2000).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

Magnuson, D. W.

Marcu, L.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004).
[CrossRef]

Marowsky, G.

P. Karlitschek, F. Lewitzka, U. Bunting, M. Niederkruger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B 67, 497–504 (1998).
[CrossRef]

Martin, R.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Matsuura, Y.

Meijer, G.

Melton, L. A.

Merkle, C. L.

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

Meyer, T. R.

Mihailov, S.

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31(1987).
[CrossRef]

Milam, D.

Miller, J. D.

Miura, T.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

K. Saito, A. J. Ikushima, T. Kotani, and T. Miura, “Improvement of the ultraviolet-proof property of silica glass fibers for ArF excimer-laser applications,” Opt. Lett. 24, 1678–1680 (1999).
[CrossRef]

Miyagi, M.

Moloney, J. V.

Naik, S. V.

W. D. Kulatilaka, S. V. Naik, and R. P. Lucht, “Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows,” AIAA J. 46, 17–20 (2008).
[CrossRef]

Natura, U.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Neu, W.

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: Dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

Niederkruger, M.

P. Karlitschek, F. Lewitzka, U. Bunting, M. Niederkruger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B 67, 497–504 (1998).
[CrossRef]

Obara, M.

Y. Itoh, K. Kunitomo, M. Obara, and T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956–2961 (1983).
[CrossRef]

Oto, M.

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

Pagano, T. S.

Papaioannou, T.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004).
[CrossRef]

Patnaik, A. K.

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

Peyghambarian, N.

Pini, R.

Ravikrishna, R. V.

R. V. Ravikrishna, C. S. Cooper, and N. M. Laurendeau, “Comparison of saturated and linear laser-induced fluorescence measurements of nitric oxide in counterflow diffusion flames,” Combust. Flame 117, 810–820 (1999).
[CrossRef]

Renfro, M. W.

Roy, S.

Rutting, M.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

Saito, K.

Salimbeni, R.

Sasnett, M. W.

M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–32 (1991).
[CrossRef]

Schade, W.

W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

Schluter, H.

Schulze, H. G.

K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
[CrossRef]

Schulzgen, A.

Seitzman, J. M.

Shastry, K.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004).
[CrossRef]

Slipchenko, M. N.

Smith, G. P.

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosely, “Laser-induced fluorescence of formaldehyde hot bands in flames,” Appl. Opt. 39, 3712–3715 (2000).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Sohr, O.

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Spiecker, G.

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Su, D.

Tamura, M.

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Taylor, R. S.

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31(1987).
[CrossRef]

Tseng, C. C.

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

Turner, R. F. B.

K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
[CrossRef]

Vaitha, R.

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004).
[CrossRef]

Vannini, M.

Voges, H.

Voytovych, D. M.

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

Webster, M.

Wei, H.

Whitehurst, C.

C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
[CrossRef]

Wodtke, A. M.

Wood, R. M.

R. M. Wood, Laser-Induced Damage of Optical Materials(Institute of Physics, 1986).

Yalin, A.

F. Loccisano, A. Yalin, S. Joshi, I. Franka, Z. Yin, and W. Lempert, “Fiber coupled ultraviolet planar laser induced fluorescence of OH radical,” AIAA paper 2012-1964 (2012).

Yamamoto, T.

Yin, Z.

F. Loccisano, A. Yalin, S. Joshi, I. Franka, Z. Yin, and W. Lempert, “Fiber coupled ultraviolet planar laser induced fluorescence of OH radical,” AIAA paper 2012-1964 (2012).

Zheng, R.

M. Campbell, R. Zheng, and K. W. D. Ledingham, “An investigation into the suitability of all-silica UV fibres for use in pulsed laser analysis techniques,” Meas. Sci. Technol. 5, 726–730 (1994).
[CrossRef]

Zhu, X.

AIAA J. (1)

W. D. Kulatilaka, S. V. Naik, and R. P. Lucht, “Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows,” AIAA J. 46, 17–20 (2008).
[CrossRef]

Appl. Opt. (11)

R. Cattolica, “OH rotational temperature from two-line laser-excited fluorescence,” Appl. Opt. 20, 1156–1166 (1981).
[CrossRef]

L. A. Melton, “Spectrally separated fluorescence emissions for diesel fuel droplets and vapor,” Appl. Opt. 22, 2224–2226 (1983).
[CrossRef]

S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, “Pulsed laser damage to optical fibers,” Appl. Opt. 24, 3140–3145 (1985).
[CrossRef]

R. Pini, R. Salimbeni, and M. Vannini, “Optical fiber transmission of high power excimer laser radiation,” Appl. Opt. 26, 4185–4189 (1987).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, and S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef]

A. A. P. Boechat, D. Su, D. R. Hall, and J. D. C. Jones, “Bend loss in large core multimode optical fiber beam delivery systems,” Appl. Opt. 30, 321–327 (1991).
[CrossRef]

R. J. H. Klein-Douwel, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosely, “Laser-induced fluorescence of formaldehyde hot bands in flames,” Appl. Opt. 39, 3712–3715 (2000).
[CrossRef]

D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Appl. Opt. 37, 546–550 (1998).
[CrossRef]

G. Kychakoff, M. A. Kimball-Linne, and R. K. Hanson, “Fiber-optic absorption/fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426–1428 (1983).
[CrossRef]

S. Kostka, S. Roy, P. J. Lakusta, T. R. Meyer, M. W. Renfro, J. R. Gord, and R. Branam, “Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH,” Appl. Opt. 48, 6332–6343(2009).
[CrossRef]

N. Jiang, M. Webster, W. R. Lempert, J. D. Miller, T. R. Meyer, C. B. Ivey, and P. M. Danehy, “MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel,” Appl. Opt. 50, A20–A28 (2011).
[CrossRef]

Appl. Phys. B (4)

R. F. Delmdahl, G. Spiecker, H. Dietz, M. Rutting, G. Hillrichs, and K. F. Klein, “Performance of optical fibers for transmission of high-peak-power XeCl excimer laser pulses,” Appl. Phys. B 77, 441–445 (2003).
[CrossRef]

P. Karlitschek, F. Lewitzka, U. Bunting, M. Niederkruger, and G. Marowsky, “Detection of aromatic pollutants in the environment by using UV-laser-induced fluorescence,” Appl. Phys. B 67, 497–504 (1998).
[CrossRef]

J. Luque and D. R. Crosley, “Absolute CH concentrations in low-pressure flames measured with laser-induced fluorescence,” Appl. Phys. B 63, 91–98 (1996).
[CrossRef]

G. Hillrichs, M. Dressel, H. Hack, R. Kunstmann, and W. Neu, “Transmission of XeCl excimer laser pulses through optical fibers: Dependence on fiber and laser parameters,” Appl. Phys. B 54, 208–215 (1992).
[CrossRef]

Combust. Flame (2)

R. V. Ravikrishna, C. S. Cooper, and N. M. Laurendeau, “Comparison of saturated and linear laser-induced fluorescence measurements of nitric oxide in counterflow diffusion flames,” Combust. Flame 117, 810–820 (1999).
[CrossRef]

M. Tamura, P. A. Berg, J. E. Harrington, J. Luque, J. B. Jeffries, G. P. Smith, and D. R. Crosley, “Collisional quenching of CH(A), OH(A), and NO(A) in low pressure hydrocarbon flames,” Combust. Flame 114, 502–514 (1998).
[CrossRef]

Combust. Sci. Technol. (1)

M. A. Kimball-Linne, G. Kychakoff, and R. K. Hanson, “Fiberoptic absorption/fluorescence combustion diagnostics,” Combust. Sci. Technol. 50, 307–322 (1986).
[CrossRef]

Environ. Sci. Technol. (1)

W. Schade and J. Bublitz, “On-site laser probe for the detection of petroleum products in water and soil,” Environ. Sci. Technol. 30, 1451–1458 (1996).
[CrossRef]

Exp. Fluids (2)

P. S. Hsu, A. K. Patnaik, J. R. Gord, T. R. Meyer, W. D. Kulatilaka, and S. Roy, “Investigation of optical fibers for coherent anti-Stokes Raman scattering (CARS) spectroscopy in reacting flows,” Exp. Fluids 49, 969–984 (2010).
[CrossRef]

C. C. Tseng, D. M. Voytovych, W. D. Kulatilaka, A. H. Bhuiyan, R. P. Lucht, C. L. Merkle, J. R. Hulka, and G. W. Jones, “Structure and mixing of a transient flow of helium injected into an established flow of nitrogen: two dimensional measurement and simulation,” Exp. Fluids 46, 559–575 (2009).
[CrossRef]

J. Appl. Phys. (2)

R. K. Brimacombe, R. S. Taylor, and K. E. Leopold, “Dependence of the nonlinear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4040 (1989).
[CrossRef]

Y. Itoh, K. Kunitomo, M. Obara, and T. Fujioka, “High-power KrF laser transmission through optical fibers and its application to the triggering of gas switches,” J. Appl. Phys. 54, 2956–2961 (1983).
[CrossRef]

J. Mod. Opt. (1)

C. Whitehurst, M. R. Dickinson, and T. A. King, “Ultraviolet pulse transmission in optical fibres,” J. Mod. Opt. 35, 371–385 (1988).
[CrossRef]

J. Non-Cryst. Solids (1)

M. Oto, S. Kikugawa, T. Miura, M. Hirano, and H. Hosono, “Fluorine doped silica glass fiber for deep ultraviolet light,” J. Non-Cryst. Solids 349, 133–138 (2004).
[CrossRef]

Meas. Sci. Technol. (1)

M. Campbell, R. Zheng, and K. W. D. Ledingham, “An investigation into the suitability of all-silica UV fibres for use in pulsed laser analysis techniques,” Meas. Sci. Technol. 5, 726–730 (1994).
[CrossRef]

Mediterranean Archaeology and Archaeometry (1)

R. Abd-Allah, “Solarization behaviour of manganese-containing glass: an experimental and analytical study,” Mediterranean Archaeology and Archaeometry 9, 37–53 (2009).

Opt. Commun. (2)

P. Karlitschek, G. Hillrichs, and K. F. Klein, “Photodegradation and nonlinear effects in optical fibers induced by pulsed UV-laser radiation,” Opt. Commun. 116, 219–230 (1995).
[CrossRef]

R. S. Taylor, K. E. Leopold, S. Mihailov, and R. K. Brimacombe, “Damage measurements of fused silica fibers using long optical pulse XeCl lasers,” Opt. Commun. 63, 26–31(1987).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. A (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448–1453 (1978).
[CrossRef]

Proc. SPIE (4)

K. F. Klein, S. Huettel, H. G. Schulze, L. S. Greek, M. W. Blades, C. A. Haynes, and R. F. B. Turner, “Fiber-guided tunable UV-laserlight system around 215 nm,” Proc. SPIE 2977, 94–104 (1997).
[CrossRef]

M. W. Sasnett and T. J. Johnston, “Beam characterization and measurement of propagation attributes,” Proc. SPIE 1414, 21–32 (1991).
[CrossRef]

U. Grzesik, H. Fabian, W. Neu, and G. Hillrichs, “Reduction of photodegradation in optical fibers for excimer laser applications,” Proc. SPIE 1649, 80–90 (1992).
[CrossRef]

U. Natura, O. Sohr, R. Martin, M. Kahlke, and G. Fasold, “Mechanisms of radiation induced defect generation in fused silica,” Proc. SPIE 5273, 155–164 (2003).
[CrossRef]

Prog. Energy Combust. Sci. (1)

K. Kohsehoinghaus, “Laser techniques for the quantitative detection of reactive intermediates in combustion systems,” Prog. Energy Combust. Sci. 20, 203–279 (1994).
[CrossRef]

Rev. Sci. Instrum. (1)

Q. Fang, T. Papaioannou, J. A. Jo, R. Vaitha, K. Shastry, and L. Marcu, “Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics,” Rev. Sci. Instrum. 75, 151–162 (2004).
[CrossRef]

Other (5)

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed. (Gorden and Breach, The Netherlands, 1996).

F. Loccisano, A. Yalin, S. Joshi, I. Franka, Z. Yin, and W. Lempert, “Fiber coupled ultraviolet planar laser induced fluorescence of OH radical,” AIAA paper 2012-1964 (2012).

R. M. Wood, Laser-Induced Damage of Optical Materials(Institute of Physics, 1986).

ISO11146-1, “Lasers and laser-related equipment—test methods for laser beam widths, divergence angles and beam propagation ratios (International standard for beam quality measurement).” (International Organization for Standardization, 2005).

G. P. Agrawal, Nonlinear Fiber Optics3rd Ed (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Optical setup for fiber transmission test. L1 and L3, focusing lenses; L2, collimation lens; BS, beam splitter; HW, half-wave plate; PBS, polarized beam splitter; PM, power meter; PD, photodiode; CCD, charge-coupled device.

Fig. 2.
Fig. 2.

Maximum output of a 283 nm laser pulse energy from fiber as a function of fiber length. The dashed line is for guiding the eye.

Fig. 3.
Fig. 3.

Maximum output of a 226 nm laser pulse energy from fiber as a function of fiber length. The dashed line is for guiding the eye.

Fig. 4.
Fig. 4.

Long-term behavior of fiber transmission for FDP, FVP, and UVM fibers at 283 nm.

Fig. 5.
Fig. 5.

Long-term behavior of fiber transmission for FDP fibers with a length of 1 m, 6 m, and 10 m at starting output pulse energy of 20 μJ, 6 μJ, and 3 μJ (at λ=226nm), respectively.

Fig. 6.
Fig. 6.

Two-dimensional/three-dimensional beam profile of the input UV laser beam (a), and the output through a 1 m fiber (b), and 10 m fiber (c).

Fig. 7.
Fig. 7.

Single-shot OH-PLIF images of ϕ=1.7 premixed CH4/O2/N2 flame in a 1.8 mm diameter nozzle taken at (a) 1 s and (b) 300 s after launching the beam through the fiber. (c) Horizontal OH-intensity profiles from both maximum and minimum intensities found in (a) and (b). Shown in the inset of panel (a) is a digital photograph of the flame under investigation.

Fig. 8.
Fig. 8.

(a) Single-shot and (b) 10-shot averaged NO-PLIF image of N2/NO gas flows in 1.8 mm diameter nozzle. NO concentration is 1000 ppm.

Fig. 9.
Fig. 9.

Excitation scan of R1(12) line with and without fiber coupling. Solid line is for guiding the eye.

Tables (3)

Tables Icon

Table 1. Fiber Characteristics

Tables Icon

Table 2. Beam Quality M2 and Output Beam NA (Obtained at λ=283nm)

Tables Icon

Table 3. Summary of LIDTs for Fused Silica Fiber in UV Wavelength Regime (λ=200nm450nm)

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M2=d0α0(4λ/π),
Δϕ=2πn2LIλ0.7,

Metrics