Abstract

Multibeam interference represents an approach for producing one-, two-, and three-dimensional periodic optical-intensity distributions with submicrometer features and periodicities. Accordingly, interference lithography (IL) has been used in a wide variety of applications, typically requiring additional lithographic steps to modify the periodic interference pattern and create integrated functional elements. In the present work, pattern-integrated interference lithography (PIIL) is introduced. PIIL is the integration of superposed pattern imaging with IL. Then a pattern-integrated interference exposure system (PIIES) is presented that implements PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. The purpose of this system is to fabricate, in a single-exposure step, a two-dimensional periodic photonic-crystal lattice with nonperiodic functional elements integrated into the periodic pattern. The design of the basic system is presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane where the three beams simultaneously interfere and integrate a superposed image of the projected mask pattern. Appropriate performance metrics are defined in order to quantify the characteristics of the resulting photonic-crystal structure. These intensity and lattice-vector metrics differ markedly from the metrics used to evaluate traditional photolithographic imaging systems. Simulation and experimental results are presented that demonstrate the fabrication of example photonic-crystal structures in a single-exposure step. Example well-defined photonic-crystal structures exhibiting favorable intensity and lattice-vector metrics demonstrate the potential of PIIL for fabricating dense integrated optical circuits.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
    [CrossRef]
  2. D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
    [CrossRef]
  3. M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
    [CrossRef]
  4. M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004).
    [CrossRef]
  5. R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
    [CrossRef]
  6. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Fabrication of a 2D photonic bandgap by a holographic method,” Electron. Lett. 33, 425–426 (1997).
    [CrossRef]
  7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
    [CrossRef]
  8. R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).
    [CrossRef]
  9. N. Feth, C. Enkrich, M. Wegener, and S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15, 501–507 (2007).
    [CrossRef]
  10. Y. Yang, Q. Z. Li, and G. P. Wang, “Design and fabrication of diverse metamaterial structures by holographic lithography,” Opt. Express 16, 11275–11280 (2008).
    [CrossRef]
  11. D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F (2007).
    [CrossRef]
  12. J. P. Spallas, A. M. Hawryluk, and D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
    [CrossRef]
  13. C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16, 10701–10709 (2008).
    [CrossRef]
  14. M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008).
    [CrossRef]
  15. R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).
    [CrossRef]
  16. E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13, 3777–3786 (2005).
    [CrossRef]
  17. A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
    [CrossRef]
  18. P. Jakl, T. Cizmar, M. Sery, and P. Zemanek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
    [CrossRef]
  19. E. L. Hedberg-Dirk and U. A. Martinez, “Large-scale protein arrays generated with interferometric lithography for spatial control of cell-material interactions,” J. Nanomater. 2010, 176750 (2010).
    [CrossRef]
  20. J.-H. Jang, D. Dendukuri, H. T. Alan, E. L. Thomas, and P. S. Doyle, “A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography,” Ang. Chem. Int. Ed. 46, 9027–9031 (2007).
    [CrossRef]
  21. F. A. Zoller, C. Padeste, Y. Ekinci, H. H. Solak, and A. Engel, “Nanostructured substrates for high density protein arrays,” Microelectron. Eng. 85, 1370–1374 (2008).
    [CrossRef]
  22. G. M. Burrow and T. K. Gaylord, “Constrained parametric optimization of point geometries in multi-beam-interference lithography,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FWS3.
  23. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
    [CrossRef]
  24. A. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
    [CrossRef]
  25. L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115 (2006).
    [CrossRef]
  26. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49, 1663–1672 (2002).
    [CrossRef]
  27. J. L. Stay and T. K. Gaylord, “Conditions for primitive-lattice-vector-direction equal contrasts in four-beam-interference lithography,” Appl. Opt. 48, 4801–4813 (2009).
    [CrossRef]
  28. L. Z. Cai, X. L. Yang, and Y. R. Wang, “Formation of a microfiber bundle by interference of three noncoplanar beams,” Opt. Lett. 26, 1858–1860 (2001).
    [CrossRef]
  29. J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
    [CrossRef]
  30. N. D. Lai, J. H. Lin, W. P. Liang, C. C. Hsu, and C. H. Lin, “Precisely introducing defects into periodic structures by using a double-step laser scanning technique,” Appl. Opt. 45, 5777–5782 (2006).
    [CrossRef]
  31. T. Liu, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography,” IEEE Photon Technol. Lett. 18, 1100–1102 (2006).
    [CrossRef]
  32. J. Murakowski, G. J. Schneider, and D. Prather, “Fabrication of 3-dimensional photonic crystals with embedded defects,” Proc. SPIE 5347, 181–189 (2004).
    [CrossRef]
  33. P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
    [CrossRef]
  34. C. J. M. van Rijn, “Laser interference as a lithographic nanopatterning tool,” J. Microlith. Microfab. Microsyst. 5, 011012 (2006).
    [CrossRef]
  35. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005).
    [CrossRef]
  36. B. W. Smith, “Alternative optical technologies: more than curiosities?” Proc. SPIE 7274, 21–210 (2009).
    [CrossRef]
  37. T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner, “Economic assessment of lithography strategies for the 22 nm technology node,” Proc. SPIE 7488, 74882Y (2009).
    [CrossRef]
  38. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13, 5331–5337 (2005).
    [CrossRef]
  39. Y. K. Lin, A. Harb, K. Lozano, D. Xu, and K. P. Chen, “Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element,” Opt. Express 17, 16625–16631 (2009).
    [CrossRef]
  40. C. A. Mack, Field Guide to Optical Lithgraphy (SPIE, 2006).
  41. G. M. Burrow and T. K. Gaylord, “Apparatus and method for photolithographic projection exposure for fabrication of one-, two-, and three-dimensional periodic structures with or without integrated patterns,” U.S. patent application 13/249,841 (30September2011).
  42. G. M. Burrow and T. K. Gaylord, “Interference projection exposure system,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWZ2.
  43. G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask for production of non-periodic functional elements integrated within periodic lattices and method for making the same,” U.S. patent application 13/250,011 (30September2011).
  44. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic-crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
    [CrossRef]
  45. A. K.-K. Wong, Optical Imaging in Projection Microlithography (SPIE Optical Engineering, 2005).
  46. J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33, 1434–1436 (2008).
    [CrossRef]
  47. J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).
  48. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  49. Zemax Optical Design Program User’s Guide (Focus Software, Inc., 2003).
  50. D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phy. 31, 4110–4119(1992).
    [CrossRef]
  51. MATLAB R2008a (The Mathworks, Natick, Massachusetts).
  52. J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
    [CrossRef]
  53. B. W. Smith and R. Schlief, “Understanding lens aberration and influences on lithographic imaging,” Proc. SPIE 4000, 294–306 (2000).
    [CrossRef]
  54. D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996).
    [CrossRef]
  55. M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
    [CrossRef]

2011

G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
[CrossRef]

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
[CrossRef]

2010

E. L. Hedberg-Dirk and U. A. Martinez, “Large-scale protein arrays generated with interferometric lithography for spatial control of cell-material interactions,” J. Nanomater. 2010, 176750 (2010).
[CrossRef]

2009

R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
[CrossRef]

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

B. W. Smith, “Alternative optical technologies: more than curiosities?” Proc. SPIE 7274, 21–210 (2009).
[CrossRef]

T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner, “Economic assessment of lithography strategies for the 22 nm technology node,” Proc. SPIE 7488, 74882Y (2009).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Conditions for primitive-lattice-vector-direction equal contrasts in four-beam-interference lithography,” Appl. Opt. 48, 4801–4813 (2009).
[CrossRef]

Y. K. Lin, A. Harb, K. Lozano, D. Xu, and K. P. Chen, “Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element,” Opt. Express 17, 16625–16631 (2009).
[CrossRef]

2008

J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33, 1434–1436 (2008).
[CrossRef]

C. H. Liu, M. H. Hong, H. W. Cheung, F. Zhang, Z. Q. Huang, L. S. Tan, and T. S. A. Hor, “Bimetallic structure fabricated by laser interference lithography for tuning surface plasmon resonance,” Opt. Express 16, 10701–10709 (2008).
[CrossRef]

Y. Yang, Q. Z. Li, and G. P. Wang, “Design and fabrication of diverse metamaterial structures by holographic lithography,” Opt. Express 16, 11275–11280 (2008).
[CrossRef]

F. A. Zoller, C. Padeste, Y. Ekinci, H. H. Solak, and A. Engel, “Nanostructured substrates for high density protein arrays,” Microelectron. Eng. 85, 1370–1374 (2008).
[CrossRef]

M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008).
[CrossRef]

P. Jakl, T. Cizmar, M. Sery, and P. Zemanek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

2007

J.-H. Jang, D. Dendukuri, H. T. Alan, E. L. Thomas, and P. S. Doyle, “A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography,” Ang. Chem. Int. Ed. 46, 9027–9031 (2007).
[CrossRef]

D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F (2007).
[CrossRef]

N. Feth, C. Enkrich, M. Wegener, and S. Linden, “Large-area magnetic metamaterials via compact interference lithography,” Opt. Express 15, 501–507 (2007).
[CrossRef]

2006

N. D. Lai, J. H. Lin, W. P. Liang, C. C. Hsu, and C. H. Lin, “Precisely introducing defects into periodic structures by using a double-step laser scanning technique,” Appl. Opt. 45, 5777–5782 (2006).
[CrossRef]

T. Liu, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography,” IEEE Photon Technol. Lett. 18, 1100–1102 (2006).
[CrossRef]

C. J. M. van Rijn, “Laser interference as a lithographic nanopatterning tool,” J. Microlith. Microfab. Microsyst. 5, 011012 (2006).
[CrossRef]

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115 (2006).
[CrossRef]

2005

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005).
[CrossRef]

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

E. Schonbrun, R. Piestun, P. Jordan, J. Cooper, K. D. Wulff, J. Courtial, and M. Padgett, “3D interferometric optical tweezers using a single spatial light modulator,” Opt. Express 13, 3777–3786 (2005).
[CrossRef]

N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express 13, 5331–5337 (2005).
[CrossRef]

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).
[CrossRef]

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

2004

M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004).
[CrossRef]

J. Murakowski, G. J. Schneider, and D. Prather, “Fabrication of 3-dimensional photonic crystals with embedded defects,” Proc. SPIE 5347, 181–189 (2004).
[CrossRef]

R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004).
[CrossRef]

2002

L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002).
[CrossRef]

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49, 1663–1672 (2002).
[CrossRef]

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic-crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

2001

2000

B. W. Smith and R. Schlief, “Understanding lens aberration and influences on lithographic imaging,” Proc. SPIE 4000, 294–306 (2000).
[CrossRef]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

1997

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Fabrication of a 2D photonic bandgap by a holographic method,” Electron. Lett. 33, 425–426 (1997).
[CrossRef]

1996

1995

J. P. Spallas, A. M. Hawryluk, and D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

1994

A. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

1992

D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phy. 31, 4110–4119(1992).
[CrossRef]

Abelmann, L.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).
[CrossRef]

Alan, H. T.

J.-H. Jang, D. Dendukuri, H. T. Alan, E. L. Thomas, and P. S. Doyle, “A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography,” Ang. Chem. Int. Ed. 46, 9027–9031 (2007).
[CrossRef]

Amako, J.

D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F (2007).
[CrossRef]

Barouch, E.

D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phy. 31, 4110–4119(1992).
[CrossRef]

Berger, V.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Fabrication of a 2D photonic bandgap by a holographic method,” Electron. Lett. 33, 425–426 (1997).
[CrossRef]

Berns, M. W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Bloomstein, T. M.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Boscolo, S.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic-crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Brooker, P.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Brueck, S. R. J.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Burrow, G. M.

G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
[CrossRef]

J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
[CrossRef]

G. M. Burrow and T. K. Gaylord, “Interference projection exposure system,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWZ2.

G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask for production of non-periodic functional elements integrated within periodic lattices and method for making the same,” U.S. patent application 13/250,011 (30September2011).

G. M. Burrow and T. K. Gaylord, “Apparatus and method for photolithographic projection exposure for fabrication of one-, two-, and three-dimensional periodic structures with or without integrated patterns,” U.S. patent application 13/249,841 (30September2011).

G. M. Burrow and T. K. Gaylord, “Constrained parametric optimization of point geometries in multi-beam-interference lithography,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FWS3.

Cai, L. Z.

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Cann, S.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Chen, K. P.

Cheung, H. W.

Chiou, A. E.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Cizmar, T.

P. Jakl, T. Cizmar, M. Sery, and P. Zemanek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

Coates, A. B.

A. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

Cole, D. C.

D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phy. 31, 4110–4119(1992).
[CrossRef]

Cooper, J.

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Fabrication of a 2D photonic bandgap by a holographic method,” Electron. Lett. 33, 425–426 (1997).
[CrossRef]

Courtial, J.

D’Angelo, A.

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

Dendukuri, D.

J.-H. Jang, D. Dendukuri, H. T. Alan, E. L. Thomas, and P. S. Doyle, “A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography,” Ang. Chem. Int. Ed. 46, 9027–9031 (2007).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Dittmann, O.

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

Doyle, P. S.

J.-H. Jang, D. Dendukuri, H. T. Alan, E. L. Thomas, and P. S. Doyle, “A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography,” Ang. Chem. Int. Ed. 46, 9027–9031 (2007).
[CrossRef]

Duarte, M.

M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008).
[CrossRef]

Efremow, N. N.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Ekinci, Y.

F. A. Zoller, C. Padeste, Y. Ekinci, H. H. Solak, and A. Engel, “Nanostructured substrates for high density protein arrays,” Microelectron. Eng. 85, 1370–1374 (2008).
[CrossRef]

Engel, A.

F. A. Zoller, C. Padeste, Y. Ekinci, H. H. Solak, and A. Engel, “Nanostructured substrates for high density protein arrays,” Microelectron. Eng. 85, 1370–1374 (2008).
[CrossRef]

Enkrich, C.

Fallahi, M.

T. Liu, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography,” IEEE Photon Technol. Lett. 18, 1100–1102 (2006).
[CrossRef]

Fedynyshyn, T. H.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Feth, N.

Flagello, D.

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

Flagello, D. G.

Fritze, M.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Gates, B. D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005).
[CrossRef]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Fabrication of a 2D photonic bandgap by a holographic method,” Electron. Lett. 33, 425–426 (1997).
[CrossRef]

Gaylord, T. K.

G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
[CrossRef]

J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Conditions for primitive-lattice-vector-direction equal contrasts in four-beam-interference lithography,” Appl. Opt. 48, 4801–4813 (2009).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Contrast in four-beam-interference lithography,” Opt. Lett. 33, 1434–1436 (2008).
[CrossRef]

J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008).
[CrossRef]

G. M. Burrow and T. K. Gaylord, “Apparatus and method for photolithographic projection exposure for fabrication of one-, two-, and three-dimensional periodic structures with or without integrated patterns,” U.S. patent application 13/249,841 (30September2011).

G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask for production of non-periodic functional elements integrated within periodic lattices and method for making the same,” U.S. patent application 13/250,011 (30September2011).

G. M. Burrow and T. K. Gaylord, “Interference projection exposure system,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWZ2.

G. M. Burrow and T. K. Gaylord, “Constrained parametric optimization of point geometries in multi-beam-interference lithography,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FWS3.

Giovanelli, R.

M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008).
[CrossRef]

Gohnermeier, A.

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

Graupner, P.

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

Greenway, R. T.

R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
[CrossRef]

Grynberg, G.

A. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

Harb, A.

Hardy, D. E.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Hawryluk, A. M.

J. P. Spallas, A. M. Hawryluk, and D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

Hedberg-Dirk, E. L.

E. L. Hedberg-Dirk and U. A. Martinez, “Large-scale protein arrays generated with interferometric lithography for spatial control of cell-material interactions,” J. Nanomater. 2010, 176750 (2010).
[CrossRef]

Heil, T.

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

Hendel, R.

R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
[CrossRef]

Hollerbach, U.

D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phy. 31, 4110–4119(1992).
[CrossRef]

Hong, J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Hong, M. H.

Hor, T. S. A.

Hsu, C. C.

Huang, Z. Q.

Jakl, P.

P. Jakl, T. Cizmar, M. Sery, and P. Zemanek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

Jang, J.-H.

J.-H. Jang, D. Dendukuri, H. T. Alan, E. L. Thomas, and P. S. Doyle, “A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography,” Ang. Chem. Int. Ed. 46, 9027–9031 (2007).
[CrossRef]

Jeong, K.

R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
[CrossRef]

Jhaveri, T.

T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner, “Economic assessment of lithography strategies for the 22 nm technology node,” Proc. SPIE 7488, 74882Y (2009).
[CrossRef]

Johnson, E. G.

Jordan, P.

Kahng, A. B.

R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
[CrossRef]

Kamenov, V.

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

Kania, D. R.

J. P. Spallas, A. M. Hawryluk, and D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

Krahmer, D.

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

Ku, Z.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Kurz, H.

M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004).
[CrossRef]

Lai, N. D.

Lasagni, A.

M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008).
[CrossRef]

Lee, S. C.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Lemme, M. C.

M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004).
[CrossRef]

Lennon, D.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Lerch, H.

M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004).
[CrossRef]

Li, Q. Z.

Liang, W. P.

Lin, C. H.

Lin, J. H.

Lin, Y. K.

Linden, S.

Liu, C. H.

Liu, T.

T. Liu, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography,” IEEE Photon Technol. Lett. 18, 1100–1102 (2006).
[CrossRef]

Lodder, J. C.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).
[CrossRef]

Louis, E.

M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008).
[CrossRef]

Lozano, K.

Luciani, D.

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

Mack, C. A.

C. A. Mack, Field Guide to Optical Lithgraphy (SPIE, 2006).

Mansuripur, M.

T. Liu, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography,” IEEE Photon Technol. Lett. 18, 1100–1102 (2006).
[CrossRef]

Martinez, U. A.

E. L. Hedberg-Dirk and U. A. Martinez, “Large-scale protein arrays generated with interferometric lithography for spatial control of cell-material interactions,” J. Nanomater. 2010, 176750 (2010).
[CrossRef]

Midrio, M.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic-crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Milster, T.

Moller, M.

M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004).
[CrossRef]

Moloney, J. V.

T. Liu, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography,” IEEE Photon Technol. Lett. 18, 1100–1102 (2006).
[CrossRef]

Moormann, C.

M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004).
[CrossRef]

Mucklich, F.

M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008).
[CrossRef]

Murakowski, J.

J. Murakowski, G. J. Schneider, and D. Prather, “Fabrication of 3-dimensional photonic crystals with embedded defects,” Proc. SPIE 5347, 181–189 (2004).
[CrossRef]

Murillo, R.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).
[CrossRef]

Narciso, J.

M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008).
[CrossRef]

Orszag, S. A.

D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phy. 31, 4110–4119(1992).
[CrossRef]

Ottaviano, L.

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

Padeste, C.

F. A. Zoller, C. Padeste, Y. Ekinci, H. H. Solak, and A. Engel, “Nanostructured substrates for high density protein arrays,” Microelectron. Eng. 85, 1370–1374 (2008).
[CrossRef]

Padgett, M.

Parisse, P.

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

Petersen, J. S.

R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
[CrossRef]

Petsas, A. I.

A. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

Piestun, R.

Pileggi, L.

T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner, “Economic assessment of lithography strategies for the 22 nm technology node,” Proc. SPIE 7488, 74882Y (2009).
[CrossRef]

Prather, D.

J. Murakowski, G. J. Schneider, and D. Prather, “Fabrication of 3-dimensional photonic crystals with embedded defects,” Proc. SPIE 5347, 181–189 (2004).
[CrossRef]

Rao, Z.

R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
[CrossRef]

Reale, A.

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

Rosenbluth, A. E.

Rothschild, M.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Rovner, V.

T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner, “Economic assessment of lithography strategies for the 22 nm technology node,” Proc. SPIE 7488, 74882Y (2009).
[CrossRef]

Rumpf, R. C.

Ruoff, J.

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

Ryan, D.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005).
[CrossRef]

Santucci, S.

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

Sawaki, D.

D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F (2007).
[CrossRef]

Schlief, R.

B. W. Smith and R. Schlief, “Understanding lens aberration and influences on lithographic imaging,” Proc. SPIE 4000, 294–306 (2000).
[CrossRef]

Schneider, G. J.

J. Murakowski, G. J. Schneider, and D. Prather, “Fabrication of 3-dimensional photonic crystals with embedded defects,” Proc. SPIE 5347, 181–189 (2004).
[CrossRef]

Schonbrun, E.

Sery, M.

P. Jakl, T. Cizmar, M. Sery, and P. Zemanek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Sheats, J. R.

J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

Smayling, M. C.

R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
[CrossRef]

Smith, B. W.

B. W. Smith, “Alternative optical technologies: more than curiosities?” Proc. SPIE 7274, 21–210 (2009).
[CrossRef]

B. W. Smith and R. Schlief, “Understanding lens aberration and influences on lithographic imaging,” Proc. SPIE 4000, 294–306 (2000).
[CrossRef]

J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

Solak, H. H.

F. A. Zoller, C. Padeste, Y. Ekinci, H. H. Solak, and A. Engel, “Nanostructured substrates for high density protein arrays,” Microelectron. Eng. 85, 1370–1374 (2008).
[CrossRef]

Someda, C. G.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic-crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Sonek, G. J.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Spallas, J. P.

J. P. Spallas, A. M. Hawryluk, and D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

Spector, S.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Stay, J. L.

Stewart, M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005).
[CrossRef]

Strojwas, A.

T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner, “Economic assessment of lithography strategies for the 22 nm technology node,” Proc. SPIE 7488, 74882Y (2009).
[CrossRef]

Tan, L. S.

Thomas, E. L.

J.-H. Jang, D. Dendukuri, H. T. Alan, E. L. Thomas, and P. S. Doyle, “A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography,” Ang. Chem. Int. Ed. 46, 9027–9031 (2007).
[CrossRef]

Totzeck, M.

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

Tucceri, P.

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Tyrrell, B.

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

van Rijn, C. J. M.

C. J. M. van Rijn, “Laser interference as a lithographic nanopatterning tool,” J. Microlith. Microfab. Microsyst. 5, 011012 (2006).
[CrossRef]

van Wolferen, H. A.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).
[CrossRef]

Vratzov, B.

M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004).
[CrossRef]

Wang, G. P.

Y. Yang, Q. Z. Li, and G. P. Wang, “Design and fabrication of diverse metamaterial structures by holographic lithography,” Opt. Express 16, 11275–11280 (2008).
[CrossRef]

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115 (2006).
[CrossRef]

Wang, W.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Wang, Y. R.

Wegener, M.

Whitesides, G. M.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005).
[CrossRef]

Willson, C. G.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Wong, A. K.-K.

A. K.-K. Wong, Optical Imaging in Projection Microlithography (SPIE Optical Engineering, 2005).

Wong, K. S.

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115 (2006).
[CrossRef]

Wu, L. J.

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115 (2006).
[CrossRef]

Wulff, K. D.

Xia, D.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Xu, D.

Xu, Q.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005).
[CrossRef]

Yang, X. L.

Yang, Y.

Yuan, L.

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115 (2006).
[CrossRef]

Zemanek, P.

P. Jakl, T. Cizmar, M. Sery, and P. Zemanek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

Zhang, F.

Zhong, Y. C.

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115 (2006).
[CrossRef]

Zoller, F. A.

F. A. Zoller, C. Padeste, Y. Ekinci, H. H. Solak, and A. Engel, “Nanostructured substrates for high density protein arrays,” Microelectron. Eng. 85, 1370–1374 (2008).
[CrossRef]

Zuppella, P.

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

Adv. Eng. Mater.

M. Duarte, A. Lasagni, R. Giovanelli, J. Narciso, E. Louis, and F. Mucklich, “Increasing lubricant film lifetime by grooving periodical patterns using laser interference metallurgy,” Adv. Eng. Mater. 10, 554–558 (2008).
[CrossRef]

Adv. Mater.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23, 147–179 (2011).
[CrossRef]

Ang. Chem. Int. Ed.

J.-H. Jang, D. Dendukuri, H. T. Alan, E. L. Thomas, and P. S. Doyle, “A route to three-dimensional structures in a microfluidic device: stop-flow interference lithography,” Ang. Chem. Int. Ed. 46, 9027–9031 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. Jakl, T. Cizmar, M. Sery, and P. Zemanek, “Static optical sorting in a laser interference field,” Appl. Phys. Lett. 92, 161110 (2008).
[CrossRef]

L. J. Wu, Y. C. Zhong, K. S. Wong, G. P. Wang, and L. Yuan, “Fabrication of hetero-binary and honeycomb photonic crystals by one-step holographic lithography,” Appl. Phys. Lett. 88, 091115 (2006).
[CrossRef]

Chem. Rev.

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev. 105, 1171–1196 (2005).
[CrossRef]

Electron. Lett.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Fabrication of a 2D photonic bandgap by a holographic method,” Electron. Lett. 33, 425–426 (1997).
[CrossRef]

IEEE J. Quantum Electron.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2D photonic-crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

IEEE Photon Technol. Lett.

T. Liu, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Fabrication of two-dimensional photonic crystals with embedded defects using blue-laser-writer and optical holography,” IEEE Photon Technol. Lett. 18, 1100–1102 (2006).
[CrossRef]

J. Microlith. Microfab. Microsyst.

C. J. M. van Rijn, “Laser interference as a lithographic nanopatterning tool,” J. Microlith. Microfab. Microsyst. 5, 011012 (2006).
[CrossRef]

M. Totzeck, P. Graupner, T. Heil, A. Gohnermeier, O. Dittmann, D. Krahmer, V. Kamenov, J. Ruoff, and D. Flagello, “Polarization influence on imaging,” J. Microlith. Microfab. Microsyst. 4, 031108 (2005).
[CrossRef]

J. Mod. Opt.

L. Z. Cai, X. L. Yang, and Y. R. Wang, “Interference of three noncoplanar beams: patterns, contrast and polarization optimization,” J. Mod. Opt. 49, 1663–1672 (2002).
[CrossRef]

J. Nanomater.

E. L. Hedberg-Dirk and U. A. Martinez, “Large-scale protein arrays generated with interferometric lithography for spatial control of cell-material interactions,” J. Nanomater. 2010, 176750 (2010).
[CrossRef]

J. Opt. Soc. Am. A

J. Vac. Sci. Technol. B

J. P. Spallas, A. M. Hawryluk, and D. R. Kania, “Field emitter array mask patterning using laser interference lithography,” J. Vac. Sci. Technol. B 13, 1973–1978 (1995).
[CrossRef]

M. Fritze, T. M. Bloomstein, B. Tyrrell, T. H. Fedynyshyn, N. N. Efremow, D. E. Hardy, S. Cann, D. Lennon, S. Spector, M. Rothschild, and P. Brooker, “Hybrid optical maskless lithography: scaling beyond the 45 nm node,” J. Vac. Sci. Technol. B 23, 2743–2748 (2005).
[CrossRef]

Jpn. J. Appl. Phy.

D. C. Cole, E. Barouch, U. Hollerbach, and S. A. Orszag, “Derivation and simulation of higher numerical aperture scalar aerial images,” Jpn. J. Appl. Phy. 31, 4110–4119(1992).
[CrossRef]

Mater. Sci. Eng. B

P. Parisse, D. Luciani, A. D’Angelo, S. Santucci, P. Zuppella, P. Tucceri, A. Reale, and L. Ottaviano, “Patterning at the nanoscale: atomic force microscopy and extreme ultraviolet interference lithography,” Mater. Sci. Eng. B 165, 227–230 (2009).
[CrossRef]

Microelectron. Eng.

R. Murillo, H. A. van Wolferen, L. Abelmann, and J. C. Lodder, “Fabrication of patterned magnetic nanodots by laser interference lithography,” Microelectron. Eng. 78–79, 260–265 (2005).
[CrossRef]

F. A. Zoller, C. Padeste, Y. Ekinci, H. H. Solak, and A. Engel, “Nanostructured substrates for high density protein arrays,” Microelectron. Eng. 85, 1370–1374 (2008).
[CrossRef]

Micromachines

G. M. Burrow and T. K. Gaylord, “Multi-beam interference advances and applications: nano-electronics, photonic crystals, metamaterials, subwavelength structures, optical trapping, and biomedical structures,” Micromachines 2, 221–257 (2011).
[CrossRef]

Nanotechnol.

M. C. Lemme, C. Moormann, H. Lerch, M. Moller, B. Vratzov, and H. Kurz, “Triple-gate metal-oxide-semiconductor field effect transistors fabricated with interference lithography,” Nanotechnol. 15, 208–210 (2004).
[CrossRef]

Nature

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000).
[CrossRef]

Opt. Commun.

A. E. Chiou, W. Wang, G. J. Sonek, J. Hong, and M. W. Berns, “Interferometric optical tweezers,” Opt. Commun. 133, 7–10 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. I. Petsas, A. B. Coates, and G. Grynberg, “Crystallography of optical lattices,” Phys. Rev. A 50, 5173–5189 (1994).
[CrossRef]

Proc. SPIE

B. W. Smith, “Alternative optical technologies: more than curiosities?” Proc. SPIE 7274, 21–210 (2009).
[CrossRef]

T. Jhaveri, A. Strojwas, L. Pileggi, and V. Rovner, “Economic assessment of lithography strategies for the 22 nm technology node,” Proc. SPIE 7488, 74882Y (2009).
[CrossRef]

J. Murakowski, G. J. Schneider, and D. Prather, “Fabrication of 3-dimensional photonic crystals with embedded defects,” Proc. SPIE 5347, 181–189 (2004).
[CrossRef]

D. Sawaki and J. Amako, “Deep-UV laser-based nano-patterning with holographic techniques,” Proc. SPIE 6459, 64590F (2007).
[CrossRef]

R. T. Greenway, R. Hendel, K. Jeong, A. B. Kahng, J. S. Petersen, Z. Rao, and M. C. Smayling, “Interference assisted lithography for patterning of 1D gridded design,” Proc. SPIE 7271, 72712U (2009).
[CrossRef]

B. W. Smith and R. Schlief, “Understanding lens aberration and influences on lithographic imaging,” Proc. SPIE 4000, 294–306 (2000).
[CrossRef]

Rev. Sci. Instrum.

J. L. Stay, G. M. Burrow, and T. K. Gaylord, “Three-beam interference lithography methodology,” Rev. Sci. Instrum. 82, 023115 (2011).
[CrossRef]

Other

MATLAB R2008a (The Mathworks, Natick, Massachusetts).

A. K.-K. Wong, Optical Imaging in Projection Microlithography (SPIE Optical Engineering, 2005).

J. R. Sheats and B. W. Smith, Microlithography: Science and Technology (Marcel Dekker, 1998).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).

Zemax Optical Design Program User’s Guide (Focus Software, Inc., 2003).

C. A. Mack, Field Guide to Optical Lithgraphy (SPIE, 2006).

G. M. Burrow and T. K. Gaylord, “Apparatus and method for photolithographic projection exposure for fabrication of one-, two-, and three-dimensional periodic structures with or without integrated patterns,” U.S. patent application 13/249,841 (30September2011).

G. M. Burrow and T. K. Gaylord, “Interference projection exposure system,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2011), paper FWZ2.

G. M. Burrow and T. K. Gaylord, “Diffractive photo-mask for production of non-periodic functional elements integrated within periodic lattices and method for making the same,” U.S. patent application 13/250,011 (30September2011).

G. M. Burrow and T. K. Gaylord, “Constrained parametric optimization of point geometries in multi-beam-interference lithography,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper FWS3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Three-beam pattern-integrated interference exposure system (PIIES) [41]. (a) The configuration of wave vectors k1, k2, and k3 produce (b) a square-lattice interference pattern with a lattice constant a=λ/(2sinθs); (c) a ray trace depicts the propagation of k1 and k2 through the PIIES optical configuration (k3 is not shown for clarity but is parallel to k1 and k2 and lies out of the plane of the page). The interfering beams are collimated and intersect at the sample plane forming a uniform square-lattice pattern. (d) A functional-element amplitude mask is placed at the mask plane with mask features sizes of d=a/|m|, where m is the magnification due to the compound objective lens; (e) the result is an optical-intensity distribution of an integrated nonperiodic functional element in an all-surrounding high-spatial-frequency periodic square lattice, enabling single-exposure fabrication of a PC device, such as a PC waveguide coupler [44].

Fig. 2.
Fig. 2.

Simulated normalized aerial optical-intensity distribution at the PIIES sample plane. (a) With no mask present, the normalized intensity plot depicts a uniform periodic three-beam interference pattern; (b) when a mask is illuminated by a single off-axis beam, the projected aerial intensity distribution at the sample plane is defined by the mask pattern; (c) when the mask is illuminated by all three off-axis interfering beams, the simulated optical-intensity distribution at the sample plane includes interference and projection patterning (outlined by a dashed line), allowing for the single-exposure formation of a PC device.

Fig. 3.
Fig. 3.

Simulated PIIES aerial optical-intensity distribution for a PC waveguide coupler. (a) The normalized intensity depicts a projected functional element (outlined by a dashed line) that prevents the formation of interference lattice points to define a PC waveguide coupler in a single exposure; (b) an unperturbed PC lattice point in the absence of a pattern mask forms a motif with p4m plane group symmetry; (c), (d) most motifs in close proximity to the functional element remain relatively unperturbed; while (e)–(g) the projected functional element has a noticeable effect on some of the PC motifs immediately surrounding PC device.

Fig. 4.
Fig. 4.

Simulated PIIES aerial optical-intensity distribution pattern metrics for a PC waveguide coupler. Single points represent the PC lattice with the projected functional element defined by a dashed line. Maximum and minimum locations for the intensity and lattice-vector metrics are labeled with their corresponding values.

Fig. 5.
Fig. 5.

Simulated PIIES aerial optical-intensity distribution lattice-vector metrics for an example PC waveguide coupler. (a) The normalized lattice-vector lengths vary by 6% or less with (b) angular deviations of less than 5 deg.

Fig. 6.
Fig. 6.

Experimental configuration. (a) The basic PIIES optical configuration includes the ability to set individually beam amplitudes and linear polarizations; (b) large diameter aspheric lenses are employed for the condenser and objective lenses in the laboratory implementation. Three-axis translational stages allow for precise placement of the mask features and sample plane to assist in focusing of the projected mask patterns.

Fig. 7.
Fig. 7.

PIIES single-exposure fabrication results. (a) A pattern-mask feature of a 600.0μm×600.0μm Greek cross is projected to a size of 172.2μm×172.2μm; (b) an SEM image depicts the resulting single-exposure PIIES optical-intensity distribution of the projected cross and interference pattern; (c) a simulation provides a close-up view of one corner of the cross; (d) a magnified SEM view of the corresponding area depicts a well-defined corner produced by the projected Greek cross surrounded by the interferometrically defined square PC lattice with a periodicity of a=1.0μm.

Fig. 8.
Fig. 8.

Demonstration of PIIL single-exposure PC waveguide fabrication. (a) A pattern-mask feature of a 2.0μm×20.0μm line segment is projected to a size of 0.6μm×5.8μm; (b) an SEM image depicts the resulting single-exposure PIIES optical-intensity distribution of the projected line segment and square-lattice PC; (c) a simulation depicts a close-up view of PC lattice points near the waveguide segment; (d) a magnified SEM view of the corresponding area depicts the selective elimination of a single row of lattice points in the surrounding periodic lattice, demonstrating the ability of the PIIL to fabricate a PC waveguide, the fundamental element of most PC devices.

Tables (6)

Tables Icon

Table 1. Comparison of Combined Techniques to Fabricate Nonperiodic Functional Elements in an MBI-Defined Periodic Lattice

Tables Icon

Table 2. Intensity and Lattice-Vector Metrics for Unaltered Photonic-Crystal Lattice Points and Altered (Zero Amplitude) Functional Element Locations

Tables Icon

Table A1. Objective Lens Parameters for PC Waveguide Coupler in Figs. 25

Tables Icon

Table A2. Zernike Fringe Coefficients for PC Waveguide Coupler in Figs. 25

Tables Icon

Table B1. Objective Lens Parameters for the Greek Cross and Line Segments in Figs. 7 and 8

Tables Icon

Table B2. Zernike Fringe Coefficients for the Greek Cross and Line Segments in Figs. 7 and 8

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

a=λ/(2sinθs),
IT(r)=I0(r){1+V12(r)cos[(k2k1)·r]+V13(r)cos[(k3k1)·r]+V23(r)cos[(k3k2)·r]},
I0(r)=i=1312Ei(r)2andVij(r)=Ei(r)Ej(r)(e^i·e^j)I0(r),
Ei(x,y)=1[Mi(fx,fy)P(fx,fy)],
M(fx,fy)=t(x,y)exp[i2π(fxx+fyy)]dxdy=[t(x,y)],
(fx,i,fy,i)=(sinθMcosφiλ,sinθMsinφiλ),
P(fx,fy)={1,iffx2+fy2<CA2/2λf20,iffx2+fy2>CA2/2λf2,
O(fx,fy)=[1m2λ2(fx2+fy2)1λ2(fx2+fy2)]14.
Z(fx,fy)=exp[i2πλW(λf2fx,λf2fy)].
P(fx,fy)=Pideal(fx,fy)O(fx,fy)Z(fx,fy).

Metrics