Abstract

A gimbal-free wide field-of-regard (FOR) optical receiver has been built in a laboratory setting for proof-of-concept testing. Multiple datasets are presented that examine the overall FOR of the system and the receiver’s ability to track and collect a signal from a moving source. The design is not intended to compete with traditional free space optical communication systems, but rather offer an alternative design that minimizes the number and complexity of mechanical components required at the surface of a small mobile platform. The receiver is composed of a micro-lens array and hexagonal bundles of large core optical fibers that route the optical signal to remote detectors and electronics. Each fiber in the bundle collects power from a distinct solid angle of space and a piezo-electric transducer is used to translate the micro-lens array and optimize coupling into a given fiber core in the bundle. The micro-lens to fiber bundle design is scalable, modular, and can be replicated in an array to increase aperture size.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37 (3), 252–260 (1989).
    [CrossRef]
  2. D. V. Hahn, D. M. Brown, N. W. Rolander, J. E. Sluz, and R. Venkat, “Fiber optic bundle array wide field-of-view optical receiver for free space optical communications,” Opt. Lett. 35, 3559–3561 (2010).
    [CrossRef]
  3. M. L. Dennis, S. Piazzollo, and K. Kasunic, “Deep space laser communication earth terminal: communications package task area appendix,” Tech. Rep. 450-RPT-DSLCET, Code 450 (Goddard Space Flight Center, Mission Systems Directorate, Sept. 22, 2005).
  4. Neptec, “Pump combiner—product description,” http://www.neptecos.com/files/Pump_Combiner.neptec.pdf .
  5. Y. Dikmelik and F. M. Davidson, “Fiber-coupling efficiency for free-space optical communication through atmospheric turbulence,” Appl. Opt. 44, 4946–4952 (2005).
    [CrossRef]
  6. F. Ho, T. Tao, W. Hung, E. Wong, and T. Wipiejewski, “Highly reliable and compact plastic fiber optic modules for large core optics fiber video link applications,” in Proceedings IEEE 2007 Electronic Components and Technology Conference (IEEE, 2007), pp. 712–716.
  7. N. Agrawal and C. C. Davis, “Design of free space optical omnidirectional transceivers for indoor applications using non-imaging optical devices,” Proc. SPIE 7091, 709107, (2008).
    [CrossRef]
  8. J. E. Sluz, J. L. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 7700D (2010).
    [CrossRef]
  9. J. C. Juarez, D. W. Young, J. E. Sluz, J. L. Riggins, and D. H. Hughes, “Free-space optical channel propagation tests over a 147 km link,” Proc. SPIE 8038, 80380B(2011).
    [CrossRef]

2011

J. C. Juarez, D. W. Young, J. E. Sluz, J. L. Riggins, and D. H. Hughes, “Free-space optical channel propagation tests over a 147 km link,” Proc. SPIE 8038, 80380B(2011).
[CrossRef]

2010

J. E. Sluz, J. L. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 7700D (2010).
[CrossRef]

D. V. Hahn, D. M. Brown, N. W. Rolander, J. E. Sluz, and R. Venkat, “Fiber optic bundle array wide field-of-view optical receiver for free space optical communications,” Opt. Lett. 35, 3559–3561 (2010).
[CrossRef]

2008

N. Agrawal and C. C. Davis, “Design of free space optical omnidirectional transceivers for indoor applications using non-imaging optical devices,” Proc. SPIE 7091, 709107, (2008).
[CrossRef]

2005

1989

C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37 (3), 252–260 (1989).
[CrossRef]

Agrawal, N.

N. Agrawal and C. C. Davis, “Design of free space optical omnidirectional transceivers for indoor applications using non-imaging optical devices,” Proc. SPIE 7091, 709107, (2008).
[CrossRef]

Brown, D. M.

Chen, C. C.

C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37 (3), 252–260 (1989).
[CrossRef]

Davidson, F. M.

Davis, C. C.

N. Agrawal and C. C. Davis, “Design of free space optical omnidirectional transceivers for indoor applications using non-imaging optical devices,” Proc. SPIE 7091, 709107, (2008).
[CrossRef]

Dennis, M. L.

M. L. Dennis, S. Piazzollo, and K. Kasunic, “Deep space laser communication earth terminal: communications package task area appendix,” Tech. Rep. 450-RPT-DSLCET, Code 450 (Goddard Space Flight Center, Mission Systems Directorate, Sept. 22, 2005).

Dikmelik, Y.

Gardner, C. S.

C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37 (3), 252–260 (1989).
[CrossRef]

Hahn, D. V.

Ho, F.

F. Ho, T. Tao, W. Hung, E. Wong, and T. Wipiejewski, “Highly reliable and compact plastic fiber optic modules for large core optics fiber video link applications,” in Proceedings IEEE 2007 Electronic Components and Technology Conference (IEEE, 2007), pp. 712–716.

Hughes, D. H.

J. C. Juarez, D. W. Young, J. E. Sluz, J. L. Riggins, and D. H. Hughes, “Free-space optical channel propagation tests over a 147 km link,” Proc. SPIE 8038, 80380B(2011).
[CrossRef]

Hung, W.

F. Ho, T. Tao, W. Hung, E. Wong, and T. Wipiejewski, “Highly reliable and compact plastic fiber optic modules for large core optics fiber video link applications,” in Proceedings IEEE 2007 Electronic Components and Technology Conference (IEEE, 2007), pp. 712–716.

Juarez, J. C.

J. C. Juarez, D. W. Young, J. E. Sluz, J. L. Riggins, and D. H. Hughes, “Free-space optical channel propagation tests over a 147 km link,” Proc. SPIE 8038, 80380B(2011).
[CrossRef]

J. E. Sluz, J. L. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 7700D (2010).
[CrossRef]

Kasunic, K.

M. L. Dennis, S. Piazzollo, and K. Kasunic, “Deep space laser communication earth terminal: communications package task area appendix,” Tech. Rep. 450-RPT-DSLCET, Code 450 (Goddard Space Flight Center, Mission Systems Directorate, Sept. 22, 2005).

Nelson, C.

J. E. Sluz, J. L. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 7700D (2010).
[CrossRef]

Piazzollo, S.

M. L. Dennis, S. Piazzollo, and K. Kasunic, “Deep space laser communication earth terminal: communications package task area appendix,” Tech. Rep. 450-RPT-DSLCET, Code 450 (Goddard Space Flight Center, Mission Systems Directorate, Sept. 22, 2005).

Riggins, J. L.

J. C. Juarez, D. W. Young, J. E. Sluz, J. L. Riggins, and D. H. Hughes, “Free-space optical channel propagation tests over a 147 km link,” Proc. SPIE 8038, 80380B(2011).
[CrossRef]

J. E. Sluz, J. L. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 7700D (2010).
[CrossRef]

Rolander, N. W.

Sluz, J. E.

J. C. Juarez, D. W. Young, J. E. Sluz, J. L. Riggins, and D. H. Hughes, “Free-space optical channel propagation tests over a 147 km link,” Proc. SPIE 8038, 80380B(2011).
[CrossRef]

D. V. Hahn, D. M. Brown, N. W. Rolander, J. E. Sluz, and R. Venkat, “Fiber optic bundle array wide field-of-view optical receiver for free space optical communications,” Opt. Lett. 35, 3559–3561 (2010).
[CrossRef]

J. E. Sluz, J. L. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 7700D (2010).
[CrossRef]

Sova, R. M.

J. E. Sluz, J. L. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 7700D (2010).
[CrossRef]

Tao, T.

F. Ho, T. Tao, W. Hung, E. Wong, and T. Wipiejewski, “Highly reliable and compact plastic fiber optic modules for large core optics fiber video link applications,” in Proceedings IEEE 2007 Electronic Components and Technology Conference (IEEE, 2007), pp. 712–716.

Venkat, R.

Wipiejewski, T.

F. Ho, T. Tao, W. Hung, E. Wong, and T. Wipiejewski, “Highly reliable and compact plastic fiber optic modules for large core optics fiber video link applications,” in Proceedings IEEE 2007 Electronic Components and Technology Conference (IEEE, 2007), pp. 712–716.

Wong, E.

F. Ho, T. Tao, W. Hung, E. Wong, and T. Wipiejewski, “Highly reliable and compact plastic fiber optic modules for large core optics fiber video link applications,” in Proceedings IEEE 2007 Electronic Components and Technology Conference (IEEE, 2007), pp. 712–716.

Young, D. W.

J. C. Juarez, D. W. Young, J. E. Sluz, J. L. Riggins, and D. H. Hughes, “Free-space optical channel propagation tests over a 147 km link,” Proc. SPIE 8038, 80380B(2011).
[CrossRef]

J. E. Sluz, J. L. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 7700D (2010).
[CrossRef]

Appl. Opt.

IEEE Trans. Commun.

C. C. Chen and C. S. Gardner, “Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links,” IEEE Trans. Commun. 37 (3), 252–260 (1989).
[CrossRef]

Opt. Lett.

Proc. SPIE

N. Agrawal and C. C. Davis, “Design of free space optical omnidirectional transceivers for indoor applications using non-imaging optical devices,” Proc. SPIE 7091, 709107, (2008).
[CrossRef]

J. E. Sluz, J. L. Riggins, J. C. Juarez, R. M. Sova, D. W. Young, and C. Nelson, “Characterization of data transmission through maritime free-space optical channel with a custom bit error rate tester,” Proc. SPIE 7700, 7700D (2010).
[CrossRef]

J. C. Juarez, D. W. Young, J. E. Sluz, J. L. Riggins, and D. H. Hughes, “Free-space optical channel propagation tests over a 147 km link,” Proc. SPIE 8038, 80380B(2011).
[CrossRef]

Other

F. Ho, T. Tao, W. Hung, E. Wong, and T. Wipiejewski, “Highly reliable and compact plastic fiber optic modules for large core optics fiber video link applications,” in Proceedings IEEE 2007 Electronic Components and Technology Conference (IEEE, 2007), pp. 712–716.

M. L. Dennis, S. Piazzollo, and K. Kasunic, “Deep space laser communication earth terminal: communications package task area appendix,” Tech. Rep. 450-RPT-DSLCET, Code 450 (Goddard Space Flight Center, Mission Systems Directorate, Sept. 22, 2005).

Neptec, “Pump combiner—product description,” http://www.neptecos.com/files/Pump_Combiner.neptec.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Conceptual design of receiver terminal.

Fig. 2.
Fig. 2.

Block diagram of experimental setup.

Fig. 3.
Fig. 3.

Experimental setup of wide FOR receiver.

Fig. 4.
Fig. 4.

(a) Custom-designed fiber plate and magnified view of fiber bundle in a hex. (b) Fiber bundle alignment.

Fig. 5.
Fig. 5.

FOR of receiver with stationary lens array.

Fig. 6.
Fig. 6.

Feedback loop control.

Fig. 7.
Fig. 7.

FOR of receiver with PZT-controlled lens array.

Fig. 8.
Fig. 8.

(a) Test Sequence. (b) Resulting response of the wide-FOR receiver.

Fig. 9.
Fig. 9.

Test sequence corresponding to dataset in Fig. 10.

Fig. 10.
Fig. 10.

APD response for the test sequence in angular motion as drawn out in Fig. 9. Lower plots are zoomed-in sections of the dataset. Letters indicate which fiber (see Fig. 4) the signal is coupled into at any given time in the test sequence.

Fig. 11.
Fig. 11.

The upper plot is the APD response for the test sequence in angular motion, and the lower plot is the corresponding sync signal for the same test sequence. A high signal indicates that the preceding 100 received bits matched the known test pattern that was sent across the optical link.

Fig. 12.
Fig. 12.

Receiver response when the distance between fiber plate, and lens array is increased to cause intentional blurring of the signal at the fiber bundles.

Fig. 13.
Fig. 13.

Magnified image of Fig. 11 showing the first 2.5 s of the dataset with intentional blurring of the focused spot at the fiber bundles.

Metrics