Abstract

At the Shen Guang II (SGII) Petawatt Laser Facility, measurements of large-energy, single-shot laser pulses sometimes feature asymmetric autocorrelation signals, causing uncertainty in the measurement of compressed pulses. This study presents a method for defining and describing the asymmetry of autocorrelation signals. We discuss two sources of asymmetry: the nonuniform distribution of the near field excited by a beam, and the rotation of autocorrelator arms from the cylinder lens. The pulsewidth of an asymmetric autocorrelation signal is shorter than its real width. After updating the autocorrelator, the single-shot autocorrelator for the SGII petawatt laser exhibits a measurement uncertainty of below 12.3%. Recommendations on reducing asymmetry in large-energy, single-shot autocorrelation are discussed.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. N. Ross, D. Karadia, and J. M. Barr, “Single shot measurement of pulse duration for a picosecond pulse at 249 nm,” Appl. Opt. 28, 4054–4056 (1989).
    [CrossRef]
  2. J. Collier, C. Danson, C. Johnson, and C. Mistry, “Uniaxial single shot autocorrelator,” Rev. Sci. Instrum. 70, 1599–1602 (1999).
    [CrossRef]
  3. K. Oba, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Femtosecond single-shot correlation system: a time-domain approach,” Appl. Opt. 38, 3810–3817 (1999).
    [CrossRef]
  4. Z. Sack and G. Mourou, “Adjusting pulse-front tilt and pulse duration by use of a single-shot autocorrelator,” Opt. Lett. 26, 462–464 (2001).
    [CrossRef]
  5. X. Ouyang, X. Li, Y. Zhang, Z. Li, G. Xu, T. Wang, B. Zhu, and J. Zhu, “A method to obtain pulse contrast on a single shot,” Chin. Opt. Lett. 7, 1001–1003 (2009).
    [CrossRef]
  6. F. Zhang, X. Ouyang, M. Sun, Q. Bi, X. Xie, and Z. Lin, “Diffraction grating single-shot correlation system for measurement of picosecond laser pulses,” Chin. Opt. Lett. 8, 1053–1056 (2010).
  7. S. Tang, X. Ouyang, L. Ji, C. Liu, Y. Zhang, X. Li, K. Huang, B. Zhu, J. Zhu, and Z. Lin, “Phase mismatching analysis of third-harmonic generation in BBO crystal,” Chin. Opt. Lett. 8, 612–614 (2010).
    [CrossRef]
  8. J. Ma, P. Yuan, Y. Wang, D. Zhang, H. Zhu, and L. Qian, “Single-shot cross-correlator using a long-wavelength sampling pulse,” Opt. Lett. 36, 978–980 (2011).
    [CrossRef]
  9. Z. Lin, X. He, and J. Zhu, “Laser fusion driver development in SIOM and some related optical technology progress in China,” in Conference on Lasers and Electro-Optics/Pacific Rim (CLEO/PR) (Optical Society of America, 2007), paper MA1_1.
  10. C. A. Haynam, P. J. Wegner, J. M. Auerbach, M. W. Bowers, S. N. Dixit, G. V. Erbert, G. M. Heestand, M. A. Henesian, M. R. Hermann, K. S. Jancaitis, K. R. Manes, C. D. Marshall, N. C. Mehta, J. Menapace, E. Moses, J. R. Murray, M. C. Nostrand, C. D. Orth, R. Patterson, R. A. Sacks, M. J. Shaw, M. Spaeth, S. B. Sutton, W. H. Williams, C. C. Widmayer, R. K. White, S. T. Yang, and B. M. Van Wonterghem, “National Ignition Facility laser performance status,” Appl. Opt. 46, 3276–3303 (2007).
    [CrossRef]
  11. P. Simon, H. Gerhardt, and S. Szatmarl, “A single-shot auto-correlator for UV femtosecond pulse,” Meas. Sci. Technol. 1, 637–639 (1990).
    [CrossRef]
  12. P. Bowlan and R. Trebino, “Complete single-shot measurement of arbitrary nanosecond laser pulses in time,” Opt. Express 19, 1367–1377 (2011).
    [CrossRef]

2011 (2)

2010 (2)

2009 (1)

2007 (1)

2001 (1)

1999 (2)

K. Oba, P.-C. Sun, Y. T. Mazurenko, and Y. Fainman, “Femtosecond single-shot correlation system: a time-domain approach,” Appl. Opt. 38, 3810–3817 (1999).
[CrossRef]

J. Collier, C. Danson, C. Johnson, and C. Mistry, “Uniaxial single shot autocorrelator,” Rev. Sci. Instrum. 70, 1599–1602 (1999).
[CrossRef]

1990 (1)

P. Simon, H. Gerhardt, and S. Szatmarl, “A single-shot auto-correlator for UV femtosecond pulse,” Meas. Sci. Technol. 1, 637–639 (1990).
[CrossRef]

1989 (1)

Auerbach, J. M.

Barr, J. M.

Bi, Q.

Bowers, M. W.

Bowlan, P.

Collier, J.

J. Collier, C. Danson, C. Johnson, and C. Mistry, “Uniaxial single shot autocorrelator,” Rev. Sci. Instrum. 70, 1599–1602 (1999).
[CrossRef]

Danson, C.

J. Collier, C. Danson, C. Johnson, and C. Mistry, “Uniaxial single shot autocorrelator,” Rev. Sci. Instrum. 70, 1599–1602 (1999).
[CrossRef]

Dixit, S. N.

Erbert, G. V.

Fainman, Y.

Gerhardt, H.

P. Simon, H. Gerhardt, and S. Szatmarl, “A single-shot auto-correlator for UV femtosecond pulse,” Meas. Sci. Technol. 1, 637–639 (1990).
[CrossRef]

Haynam, C. A.

He, X.

Z. Lin, X. He, and J. Zhu, “Laser fusion driver development in SIOM and some related optical technology progress in China,” in Conference on Lasers and Electro-Optics/Pacific Rim (CLEO/PR) (Optical Society of America, 2007), paper MA1_1.

Heestand, G. M.

Henesian, M. A.

Hermann, M. R.

Huang, K.

Jancaitis, K. S.

Ji, L.

Johnson, C.

J. Collier, C. Danson, C. Johnson, and C. Mistry, “Uniaxial single shot autocorrelator,” Rev. Sci. Instrum. 70, 1599–1602 (1999).
[CrossRef]

Karadia, D.

Li, X.

Li, Z.

Lin, Z.

Liu, C.

Ma, J.

Manes, K. R.

Marshall, C. D.

Mazurenko, Y. T.

Mehta, N. C.

Menapace, J.

Mistry, C.

J. Collier, C. Danson, C. Johnson, and C. Mistry, “Uniaxial single shot autocorrelator,” Rev. Sci. Instrum. 70, 1599–1602 (1999).
[CrossRef]

Moses, E.

Mourou, G.

Murray, J. R.

Nostrand, M. C.

Oba, K.

Orth, C. D.

Ouyang, X.

Patterson, R.

Qian, L.

Ross, I. N.

Sack, Z.

Sacks, R. A.

Shaw, M. J.

Simon, P.

P. Simon, H. Gerhardt, and S. Szatmarl, “A single-shot auto-correlator for UV femtosecond pulse,” Meas. Sci. Technol. 1, 637–639 (1990).
[CrossRef]

Spaeth, M.

Sun, M.

Sun, P.-C.

Sutton, S. B.

Szatmarl, S.

P. Simon, H. Gerhardt, and S. Szatmarl, “A single-shot auto-correlator for UV femtosecond pulse,” Meas. Sci. Technol. 1, 637–639 (1990).
[CrossRef]

Tang, S.

Trebino, R.

Van Wonterghem, B. M.

Wang, T.

Wang, Y.

Wegner, P. J.

White, R. K.

Widmayer, C. C.

Williams, W. H.

Xie, X.

Xu, G.

Yang, S. T.

Yuan, P.

Zhang, D.

Zhang, F.

Zhang, Y.

Zhu, B.

Zhu, H.

Zhu, J.

Appl. Opt. (3)

Chin. Opt. Lett. (3)

Meas. Sci. Technol. (1)

P. Simon, H. Gerhardt, and S. Szatmarl, “A single-shot auto-correlator for UV femtosecond pulse,” Meas. Sci. Technol. 1, 637–639 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

J. Collier, C. Danson, C. Johnson, and C. Mistry, “Uniaxial single shot autocorrelator,” Rev. Sci. Instrum. 70, 1599–1602 (1999).
[CrossRef]

Other (1)

Z. Lin, X. He, and J. Zhu, “Laser fusion driver development in SIOM and some related optical technology progress in China,” in Conference on Lasers and Electro-Optics/Pacific Rim (CLEO/PR) (Optical Society of America, 2007), paper MA1_1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the single-shot autocorrelation: Φ is the angle between two beams, α is the length of the autocorrelation area, τ(x) denotes the time axis, and SHG is a crystal used to generate second-harmonic waves.

Fig. 2.
Fig. 2.

Asymmetric pulses and their autocorrelations: (a) distortion in rise slope (T=τFWHM) (b) distortion in decline slope (T=τFWHM).

Fig. 3.
Fig. 3.

Autocorrelation aberration caused by the nonuniform distribution of the near field. (a) Linear variation of near-field distribution. (b) Step variation of near-field distribution.

Fig. 4.
Fig. 4.

Autocorrelation aberration caused by the rotation aberration of two arms (a) Rotation of type I in autocorrelation arms; (b) Rotation of type II in autocorrelation arms; (c) Asymmetry and uncertainty from rotation.

Fig. 5.
Fig. 5.

Asymmetry and uncertainty of the mixture of step variation and rotation (a) Asymmetry of mixture of step variation and rotation; (b) Uncertainty of mixture of step variation and rotation.

Fig. 6.
Fig. 6.

Autocorrelation aberration in experiments. (a) Autocorrelator of SGII-PW: M1, M2, M3, M4, M5, are mirrors; CL1, CL2, CL3, CL4 are cylindrical lenses. (b) Measured experimental data on the intensity of autocorrelation curves at large-energy, single-shot measurement of SGII petawatt laser pulses.

Tables (2)

Tables Icon

Table 1. Asymmetry and Uncertainty from Near-Field Distribution

Tables Icon

Table 2. Asymmetry and Uncertainty from Mirror Image

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

IA(τ)=I(t)I(tτ)dt.
I(t)=I0exp(4ln2t2/τFWHM2),
IA(τ)=I02exp(4ln2t2/(2τFWHM)2).
τmax(x)=αsin(Φ/2)/c.
σ=ΔτrΔτfΔτr+Δτf×100%,
ΔτA=Δτr+Δτf.
δ=ΔτAΔτ0Δτ0×100%.
I(t)=exp(4ln2t2/τFWHM2)+0.5exp(4ln2(t+T)2/τFWHM2).
A(τ)=π2τFWHM24ln2exp(τ2τFWHM2/2ln2)+0.5π2τFWHM24ln2exp((τT)2τFWHM2/2ln2)+0.5π2τFWHM24ln2exp((τ+T)2τFWHM2/2ln2).
flinearI(τ)=0.5τ/τmax+0.5,[τmax,τmax].
IA,linearI(τ)=IA(τ)×flinear I2(τ).
flinearII(τ)=0.5τ×τmax+0.5,[τmax,τmax].
IA,linearII(τ)=IA(τ)×flinearII2(τ).
fstep I(τ)={0.5,[τmax,0.1τmax](0.5/0.2τmax)×τ+0.5,[0.1τmax,0.1τmax]1,[0.1τmax,τmax].
IA,step I(τ)=IA(τ)×fstep I2(τ).
fstep II(τ)={1,[τmax,0.1τmax](0.5/0.2τmax)×τ+1,[0.1τmax,0.1τmax]0.5,[0.1τmax,τmax].
IA,step II(τ)=IA(τ)×fstep II2(τ).
frotationI(τ)={0,[τmax,τstart](ττstartτeff)2,[τstart,τmax].
IA,rotationI(τ)=IA(τ)×frotationI2(τ).
frotation II(τ)={(τendττeff)2,[τmax,τend]0,[τend,τmax].
IA,rotationII(τ)=IA(τ)×frotationII2(τ).

Metrics