Abstract

A compact 1×4 wavelength demultiplexer is proposed based on the directional coupling of periodic dielectric waveguides for optical communication wavelengths. With appropriate optimization, the 1×4 wavelength demultiplexer can route 1130, 1310, 1490, and 1700 nm wavelengths to corresponding out ports with a transmittance of more than 95%. This provides a simple and compact demultiplexer that is expected to be applied to highly dense photonic integrated circuits.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lifante, “Introduction to integrated photonics,” Integrated Photonics: Fundamentals (Wiley, 2003), Chap. 1, pp. 13–18.
  2. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970–1975 (2001).
    [CrossRef]
  3. S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
    [CrossRef]
  4. F. S. Chien, Y. Hsu, W. Hsieh, and S. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004).
    [CrossRef]
  5. A. Sharkawy, S. Shi, and D. W. Prather, “Multichannel wavelength division multiplexing with photonic crystals,” Appl. Opt. 40, 2247–2252 (2001).
    [CrossRef]
  6. M. Y. Tekeste and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express 14, 7931–7942 (2006).
    [CrossRef]
  7. H. Kim, I. Park, B. O. S. Park, E. Lee, and S. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing,” Opt. Express 12, 5625–5633 (2004).
    [CrossRef]
  8. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
    [CrossRef]
  9. P. Borel, A. Harpoh, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004).
    [CrossRef]
  10. J. S. Jensen, and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22, 1191–1198 (2005).
    [CrossRef]
  11. S. Fan, J. D. Joannopoulos, J. N. Winn, A. Devenyi, J. C. Chen, and R. D. Meade, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995).
    [CrossRef]
  12. P. Luan, and K. Chang, “Transmission characteristics of finite periodic dielectric waveguides,” Opt. Express 14, 3263–3272 (2006).
    [CrossRef]
  13. K. Lee, C. Chen, and Y. Lin, “Transmission characteristics of various bent periodic dielectric waveguides,” Opt. Quantum Electron. 40, 633–643 (2008).
    [CrossRef]
  14. P. Luan, and K. Chang, “Periodic dielectric waveguide beam splitter based on co-directional coupling,” Opt. Express 15, 4536–4545 (2007).
    [CrossRef]
  15. J. Garcia, P. Sanchis, A. Martinez, and J. Marti, “1 D periodic structures for slow-wave induced non-linearity enhancement,” Opt. Express 16, 3146–3160 (2008).
    [CrossRef]
  16. Y. Zhang, W. Huang, and B. Li, “Fabry-Pérot microcavities with controllable resonant wavelengths in periodic dielectric waveguides,” Appl. Phys. Lett. 93, 31110 (2008).
    [CrossRef]
  17. D. E. A. Gao, “Mach–Zehnder interferometer based on coupled dielectric pillars,” Chin. Phys. Lett. 24, 3172 (2007).
    [CrossRef]
  18. W. Huang, Y. Zhang, and B. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600–1609 (2008).
    [CrossRef]
  19. D. N. Chigrin, A. V. Lavrinenko, and C. M. S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341 (2005).
    [CrossRef]
  20. J. D. Jannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 5.
  21. S. Johnson, and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [CrossRef]
  22. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

2008 (4)

K. Lee, C. Chen, and Y. Lin, “Transmission characteristics of various bent periodic dielectric waveguides,” Opt. Quantum Electron. 40, 633–643 (2008).
[CrossRef]

J. Garcia, P. Sanchis, A. Martinez, and J. Marti, “1 D periodic structures for slow-wave induced non-linearity enhancement,” Opt. Express 16, 3146–3160 (2008).
[CrossRef]

Y. Zhang, W. Huang, and B. Li, “Fabry-Pérot microcavities with controllable resonant wavelengths in periodic dielectric waveguides,” Appl. Phys. Lett. 93, 31110 (2008).
[CrossRef]

W. Huang, Y. Zhang, and B. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600–1609 (2008).
[CrossRef]

2007 (2)

D. E. A. Gao, “Mach–Zehnder interferometer based on coupled dielectric pillars,” Chin. Phys. Lett. 24, 3172 (2007).
[CrossRef]

P. Luan, and K. Chang, “Periodic dielectric waveguide beam splitter based on co-directional coupling,” Opt. Express 15, 4536–4545 (2007).
[CrossRef]

2006 (2)

2005 (2)

J. S. Jensen, and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22, 1191–1198 (2005).
[CrossRef]

D. N. Chigrin, A. V. Lavrinenko, and C. M. S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341 (2005).
[CrossRef]

2004 (3)

2002 (1)

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

2001 (3)

1998 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
[CrossRef]

1995 (1)

Borel, P.

Boscolo, S.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Chang, K.

Chen, C.

K. Lee, C. Chen, and Y. Lin, “Transmission characteristics of various bent periodic dielectric waveguides,” Opt. Quantum Electron. 40, 633–643 (2008).
[CrossRef]

Chen, J. C.

Cheng, S.

Chien, F. S.

Chigrin, D. N.

D. N. Chigrin, A. V. Lavrinenko, and C. M. S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341 (2005).
[CrossRef]

Devenyi, A.

Fan, S.

Frandsen, L.

Gao, D. E. A.

D. E. A. Gao, “Mach–Zehnder interferometer based on coupled dielectric pillars,” Chin. Phys. Lett. 24, 3172 (2007).
[CrossRef]

Garcia, J.

Hagness, S. C.

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

Harpoh, A.

Hsieh, W.

Hsu, Y.

Huang, W.

W. Huang, Y. Zhang, and B. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600–1609 (2008).
[CrossRef]

Y. Zhang, W. Huang, and B. Li, “Fabry-Pérot microcavities with controllable resonant wavelengths in periodic dielectric waveguides,” Appl. Phys. Lett. 93, 31110 (2008).
[CrossRef]

Jannopoulos, J. D.

J. D. Jannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 5.

Jensen, J.

Jensen, J. S.

Joannopoulos, J.

Joannopoulos, J. D.

Johnson, S.

Johnson, S. G.

J. D. Jannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 5.

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Kim, H.

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Koshiba, M.

Kristensen, M.

Lavrinenko, A. V.

D. N. Chigrin, A. V. Lavrinenko, and C. M. S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341 (2005).
[CrossRef]

Lee, E.

Lee, K.

K. Lee, C. Chen, and Y. Lin, “Transmission characteristics of various bent periodic dielectric waveguides,” Opt. Quantum Electron. 40, 633–643 (2008).
[CrossRef]

Lee, S.

Li, B.

Y. Zhang, W. Huang, and B. Li, “Fabry-Pérot microcavities with controllable resonant wavelengths in periodic dielectric waveguides,” Appl. Phys. Lett. 93, 31110 (2008).
[CrossRef]

W. Huang, Y. Zhang, and B. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600–1609 (2008).
[CrossRef]

Lifante, G.

G. Lifante, “Introduction to integrated photonics,” Integrated Photonics: Fundamentals (Wiley, 2003), Chap. 1, pp. 13–18.

Lin, Y.

K. Lee, C. Chen, and Y. Lin, “Transmission characteristics of various bent periodic dielectric waveguides,” Opt. Quantum Electron. 40, 633–643 (2008).
[CrossRef]

Luan, P.

Marti, J.

Martinez, A.

Meade, R. D.

S. Fan, J. D. Joannopoulos, J. N. Winn, A. Devenyi, J. C. Chen, and R. D. Meade, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995).
[CrossRef]

J. D. Jannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 5.

Midrio, M.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Park, B. O. S.

Park, I.

Prather, D. W.

Sanchis, P.

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Sharkawy, A.

Shi, P.

Shi, S.

Sigmund, O.

Someda, C. G.

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

Taflove, A.

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Tekeste, M. Y.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Torres, C. M. S.

D. N. Chigrin, A. V. Lavrinenko, and C. M. S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341 (2005).
[CrossRef]

Winn, J. N.

S. Fan, J. D. Joannopoulos, J. N. Winn, A. Devenyi, J. C. Chen, and R. D. Meade, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995).
[CrossRef]

J. D. Jannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 5.

Yarrison-Rice, J. M.

Zhang, Y.

W. Huang, Y. Zhang, and B. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600–1609 (2008).
[CrossRef]

Y. Zhang, W. Huang, and B. Li, “Fabry-Pérot microcavities with controllable resonant wavelengths in periodic dielectric waveguides,” Appl. Phys. Lett. 93, 31110 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Zhang, W. Huang, and B. Li, “Fabry-Pérot microcavities with controllable resonant wavelengths in periodic dielectric waveguides,” Appl. Phys. Lett. 93, 31110 (2008).
[CrossRef]

Chin. Phys. Lett. (1)

D. E. A. Gao, “Mach–Zehnder interferometer based on coupled dielectric pillars,” Chin. Phys. Lett. 24, 3172 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Boscolo, M. Midrio, and C. G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides,” IEEE J. Quantum Electron. 38, 47–53 (2002).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (9)

P. Luan, and K. Chang, “Transmission characteristics of finite periodic dielectric waveguides,” Opt. Express 14, 3263–3272 (2006).
[CrossRef]

W. Huang, Y. Zhang, and B. Li, “Ultracompact wavelength and polarization splitters in periodic dielectric waveguides,” Opt. Express 16, 1600–1609 (2008).
[CrossRef]

F. S. Chien, Y. Hsu, W. Hsieh, and S. Cheng, “Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides,” Opt. Express 12, 1119–1125 (2004).
[CrossRef]

M. Y. Tekeste and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express 14, 7931–7942 (2006).
[CrossRef]

H. Kim, I. Park, B. O. S. Park, E. Lee, and S. Lee, “Self-imaging phenomena in multi-mode photonic crystal line-defect waveguides: application to wavelength de-multiplexing,” Opt. Express 12, 5625–5633 (2004).
[CrossRef]

P. Luan, and K. Chang, “Periodic dielectric waveguide beam splitter based on co-directional coupling,” Opt. Express 15, 4536–4545 (2007).
[CrossRef]

J. Garcia, P. Sanchis, A. Martinez, and J. Marti, “1 D periodic structures for slow-wave induced non-linearity enhancement,” Opt. Express 16, 3146–3160 (2008).
[CrossRef]

S. Johnson, and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
[CrossRef]

P. Borel, A. Harpoh, L. Frandsen, M. Kristensen, P. Shi, J. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004).
[CrossRef]

Opt. Quantum Electron. (2)

D. N. Chigrin, A. V. Lavrinenko, and C. M. S. Torres, “Numerical characterization of nanopillar photonic crystal waveguides and directional couplers,” Opt. Quantum Electron. 37, 331–341 (2005).
[CrossRef]

K. Lee, C. Chen, and Y. Lin, “Transmission characteristics of various bent periodic dielectric waveguides,” Opt. Quantum Electron. 40, 633–643 (2008).
[CrossRef]

Phys. Rev. B (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, 10096 (1998).
[CrossRef]

Other (3)

G. Lifante, “Introduction to integrated photonics,” Integrated Photonics: Fundamentals (Wiley, 2003), Chap. 1, pp. 13–18.

J. D. Jannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008), Chap. 5.

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 2nd ed. (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Directional coupling model, with row-spacing d=2.25a. The dielectric constant is ε=11.56(GaAs), the radius of dielectric rods is r=0.3a, where a is the lattice constant. The dashed frame shows the supercell for the PWE calculation.

Fig. 2.
Fig. 2.

(a) Band structure for the model in Fig. 1. The insets show the mode patterns for the first and second band mode. (b) Coupling length of the model in Fig. 1.

Fig. 3.
Fig. 3.

Schematic view of the 1×2 PDWGs wavelength splitter.

Fig. 4.
Fig. 4.

Steady-state field patterns observed in frequency domain in the 1×2 wavelength splitter for signal with single frequency. (a) 0.1935[2πc/a], (b) 0.1663[2πc/a], (c) 0.1461[2πc/a], and (d) 0.1283[2πc/a].

Fig. 5.
Fig. 5.

Schematic view of the 1×4 PDWGs wavelength demultiplexer. The multiplexed signals with frequencies ω1(0.1935[2πc/a]), ω2(0.1663[2πc/a]), ω3(0.1461[2πc/a]), and ω4(0.1283[2πc/a]) are injected into the input port; the demultiplexed signals are outputted from port 1 to 4, respectively.

Fig. 6.
Fig. 6.

Coupling length of the directional coupling model of PDWGs, Lc1 (with d1=2.25a) and Lc2 (with d2=1.75a).

Fig. 7.
Fig. 7.

Transmission spectra of the 1×4 wavelength demultiplexer for (a) l1=60a, l2=22a, l3=30a and (b) l1=54a, l2=15a, l3=24a.

Fig. 8.
Fig. 8.

Steady-state field patterns observed in frequency domain in the 1×4 wavelength demultiplexer for signal with single frequency. (a) 0.1935[2πc/a], (b) 0.1663[2πc/a], (c) 0.1461[2πc/a], and (d) 0.1283[2πc/a].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Lc=π|k1k2|.
l1=Lc1(ω1)=2Lc1(ω2)=3Lc1(ω3)=4Lc1(ω4),
l2=mLc2(ω1)=mLc2(ω3),
l3=l1/2=Lc1(ω2)=2Lc1(ω4).

Metrics