Abstract

Recent work has shown that tailored overcomplete dictionaries can provide a better image model than standard basis functions for a variety of image processing tasks. Here we propose a modified K-SVD dictionary learning algorithm designed to maintain the advantages of the original approach but with a focus on improved convergence. We then use the learned model to denoise infrared maritime imagery and compare the performance to the original K-SVD algorithm, several overcomplete “fixed” dictionaries, and a standard wavelet denoising algorithm. Results indicate the superiority of overcomplete representations and show that our tailored approach provides similar peak signal-to-noise ratios as the traditional K-SVD at roughly half the computational cost.

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription