R. M. Rennie, D. A. Duffin, and E. J. Jumper, “Characterization and aero-optical correction of a forced two-dimensional weakly compressible shear layer,” AIAA J. 46, 2787–2795 (2008).

[CrossRef]

A. P. Freeman and H. J. Catrakis, “Direction reduction of aero-optical aberrations by large structure suppression control in turbulence,” AIAA J. 46, 2582–2590 (2008).

[CrossRef]

G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberrations using continuous deformable mirrors,” Opt. Express 16, 2859–2866 (2008).

[CrossRef]

T. Weyrauch and M. A. Vorontsov, “Dynamic wave-front distortion compensation with a 134-control-channel submillisecond adaptive system,” Opt. Lett. 27, 751–753 (2002).

[CrossRef]

M. Cohen, G. Cauwenberghs, and M. A. Vorontsov, “Image sharpness and beam focus VLSI sensors for adaptive optics,” IEEE Sens. J. 2, 680–690 (2002).

[CrossRef]

M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002).

[CrossRef]

C. Pantano and S. Sarkar, “A study of compressibility effects in the high-speed turbulent shear layer using direct simulation,” J. Fluid Mech. 451, 329–371 (2002).

[CrossRef]

S. Pirozzoli, “Conservative hybrid compact-WENO schemes for shock-turbulence interaction,” J. Comput. Phys. 178, 81–117 (2002).

[CrossRef]

E. J. Jumper and E. J. Fitzgerald, “Recent advances in aero-optics,” Prog. Aerosp. Sci. 37, 299–339 (2001).

[CrossRef]

M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. 17, 1440–1453 (2000).

[CrossRef]

H. C. Yee, N. D. Sandham, and M. J. Djomehri, “Low-dissipative high-order shock-capturing methods using characteristic-based filters,” J. Comput. Phys. 150, 199–238 (1999).

[CrossRef]

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 83–89 (1999).

[CrossRef]

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromechined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).

[CrossRef]

S. Stanley and S. Sarkar, “Simulations of spatially developing two-dimensional shear layers and jets,” Theor. Comput. Fluid Dyn. 9, 121–147 (1997).

[CrossRef]

M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997).

[CrossRef]

T. J. Poinsot and S. K. Lele, “Boundary conditions for direct simulations of compressible viscous flows,” J. Comput. Phys. 101, 104–129 (1992).

[CrossRef]

S. K. Lele, “Compact finite difference schemes with spectral-like resolution,” J. Comput. Phys. 103, 16–42 (1992).

[CrossRef]

C. W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatary shock capturing schemes,” J. Comput. Phys. 77, 439–471 (1988).

[CrossRef]

C. M. Ho and P. Huerre, “Perturbed free shear layers,” Annu. Rev. Fluid Mech. 16, 365–424 (1984).

[CrossRef]

J. L. Steger and R. F. Warming, “Flux vector splitting of the inviscid gasdynamic equations with application to finite difference method,” J. Comput. Phys. 40, 263–293 (1981).

[CrossRef]

J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).

[CrossRef]

J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Taylor & Francis, 1997), Chap. 5.1.

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 83–89 (1999).

[CrossRef]

M. A. Vorontsov and G. W. Carhart, “Adaptive wavefront control with asynchronous stochastic parallel gradient descent clusters,” J. Opt. Soc. Am. A. 23, 2613–2622 (2006).

[CrossRef]

M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. 17, 1440–1453 (2000).

[CrossRef]

M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997).

[CrossRef]

A. P. Freeman and H. J. Catrakis, “Direction reduction of aero-optical aberrations by large structure suppression control in turbulence,” AIAA J. 46, 2582–2590 (2008).

[CrossRef]

M. Cohen, G. Cauwenberghs, and M. A. Vorontsov, “Image sharpness and beam focus VLSI sensors for adaptive optics,” IEEE Sens. J. 2, 680–690 (2002).

[CrossRef]

M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. 17, 1440–1453 (2000).

[CrossRef]

M. Cohen, G. Cauwenberghs, and M. A. Vorontsov, “Image sharpness and beam focus VLSI sensors for adaptive optics,” IEEE Sens. J. 2, 680–690 (2002).

[CrossRef]

M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. 17, 1440–1453 (2000).

[CrossRef]

H. C. Yee, N. D. Sandham, and M. J. Djomehri, “Low-dissipative high-order shock-capturing methods using characteristic-based filters,” J. Comput. Phys. 150, 199–238 (1999).

[CrossRef]

R. M. Rennie, D. A. Duffin, and E. J. Jumper, “Characterization and aero-optical correction of a forced two-dimensional weakly compressible shear layer,” AIAA J. 46, 2787–2795 (2008).

[CrossRef]

E. J. Jumper and E. J. Fitzgerald, “Recent advances in aero-optics,” Prog. Aerosp. Sci. 37, 299–339 (2001).

[CrossRef]

A. P. Freeman and H. J. Catrakis, “Direction reduction of aero-optical aberrations by large structure suppression control in turbulence,” AIAA J. 46, 2582–2590 (2008).

[CrossRef]

K. G. Gilbert and L. J. Otten, eds., Aero-Optical Phenomena (AIAA, 1982).

J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).

[CrossRef]

C. M. Ho and P. Huerre, “Perturbed free shear layers,” Annu. Rev. Fluid Mech. 16, 365–424 (1984).

[CrossRef]

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 83–89 (1999).

[CrossRef]

C. M. Ho and P. Huerre, “Perturbed free shear layers,” Annu. Rev. Fluid Mech. 16, 365–424 (1984).

[CrossRef]

R. M. Rennie, D. A. Duffin, and E. J. Jumper, “Characterization and aero-optical correction of a forced two-dimensional weakly compressible shear layer,” AIAA J. 46, 2787–2795 (2008).

[CrossRef]

E. J. Jumper and E. J. Fitzgerald, “Recent advances in aero-optics,” Prog. Aerosp. Sci. 37, 299–339 (2001).

[CrossRef]

R. M. Rennie, J. P. Siegenthaler, and E. J. Jumper, “Forcing of a two-dimensional, weakly-compressed subsonic free shear layer,” AIAA paper 2006–0561 (American Institute of Aeronautics and Astronautics, 2006).

S. K. Lele, “Compact finite difference schemes with spectral-like resolution,” J. Comput. Phys. 103, 16–42 (1992).

[CrossRef]

T. J. Poinsot and S. K. Lele, “Boundary conditions for direct simulations of compressible viscous flows,” J. Comput. Phys. 101, 104–129 (1992).

[CrossRef]

S. K. Lele, “Direct numerical simulation of compressible free shear flows,” AIAA paper 1989-0374 (American Institute of Aeronautics and Astronautics, 1989).

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 83–89 (1999).

[CrossRef]

J. Seidel, S. Seigel, and T. McLaughlin, “Feedback flow control of a shear layer for aero-optical aberrations,” AIAA paper 2010-0356 (American Institute of Aeronautics and Astronautics, 2010).

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromechined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).

[CrossRef]

C. W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatary shock capturing schemes,” J. Comput. Phys. 77, 439–471 (1988).

[CrossRef]

K. G. Gilbert and L. J. Otten, eds., Aero-Optical Phenomena (AIAA, 1982).

C. Pantano and S. Sarkar, “A study of compressibility effects in the high-speed turbulent shear layer using direct simulation,” J. Fluid Mech. 451, 329–371 (2002).

[CrossRef]

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 83–89 (1999).

[CrossRef]

S. Pirozzoli, “Conservative hybrid compact-WENO schemes for shock-turbulence interaction,” J. Comput. Phys. 178, 81–117 (2002).

[CrossRef]

J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Taylor & Francis, 1997), Chap. 5.1.

T. J. Poinsot and S. K. Lele, “Boundary conditions for direct simulations of compressible viscous flows,” J. Comput. Phys. 101, 104–129 (1992).

[CrossRef]

R. M. Rennie, D. A. Duffin, and E. J. Jumper, “Characterization and aero-optical correction of a forced two-dimensional weakly compressible shear layer,” AIAA J. 46, 2787–2795 (2008).

[CrossRef]

R. M. Rennie, J. P. Siegenthaler, and E. J. Jumper, “Forcing of a two-dimensional, weakly-compressed subsonic free shear layer,” AIAA paper 2006–0561 (American Institute of Aeronautics and Astronautics, 2006).

H. C. Yee, N. D. Sandham, and M. J. Djomehri, “Low-dissipative high-order shock-capturing methods using characteristic-based filters,” J. Comput. Phys. 150, 199–238 (1999).

[CrossRef]

N. D. Sandham and H. C. Yee, “A numerical study of a class of TVD schemes for compressible mixing layers,” NASA TM-102194 (NASA, 1989).

C. Pantano and S. Sarkar, “A study of compressibility effects in the high-speed turbulent shear layer using direct simulation,” J. Fluid Mech. 451, 329–371 (2002).

[CrossRef]

S. Stanley and S. Sarkar, “Simulations of spatially developing two-dimensional shear layers and jets,” Theor. Comput. Fluid Dyn. 9, 121–147 (1997).

[CrossRef]

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromechined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).

[CrossRef]

J. Seidel, S. Seigel, and T. McLaughlin, “Feedback flow control of a shear layer for aero-optical aberrations,” AIAA paper 2010-0356 (American Institute of Aeronautics and Astronautics, 2010).

J. Seidel, S. Seigel, and T. McLaughlin, “Feedback flow control of a shear layer for aero-optical aberrations,” AIAA paper 2010-0356 (American Institute of Aeronautics and Astronautics, 2010).

C. W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatary shock capturing schemes,” J. Comput. Phys. 77, 439–471 (1988).

[CrossRef]

R. M. Rennie, J. P. Siegenthaler, and E. J. Jumper, “Forcing of a two-dimensional, weakly-compressed subsonic free shear layer,” AIAA paper 2006–0561 (American Institute of Aeronautics and Astronautics, 2006).

J. C. Spall, Introduction to Stochastic Search and Optimization (Wiley, 2003), Chap. 7.

S. Stanley and S. Sarkar, “Simulations of spatially developing two-dimensional shear layers and jets,” Theor. Comput. Fluid Dyn. 9, 121–147 (1997).

[CrossRef]

J. L. Steger and R. F. Warming, “Flux vector splitting of the inviscid gasdynamic equations with application to finite difference method,” J. Comput. Phys. 40, 263–293 (1981).

[CrossRef]

J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Taylor & Francis, 1997), Chap. 5.1.

R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).

G. Vdovin, O. Soloviev, A. Samokhin, and M. Loktev, “Correction of low order aberrations using continuous deformable mirrors,” Opt. Express 16, 2859–2866 (2008).

[CrossRef]

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromechined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).

[CrossRef]

M. A. Vorontsov and G. W. Carhart, “Adaptive wavefront control with asynchronous stochastic parallel gradient descent clusters,” J. Opt. Soc. Am. A. 23, 2613–2622 (2006).

[CrossRef]

T. Weyrauch and M. A. Vorontsov, “Dynamic wave-front distortion compensation with a 134-control-channel submillisecond adaptive system,” Opt. Lett. 27, 751–753 (2002).

[CrossRef]

M. Cohen, G. Cauwenberghs, and M. A. Vorontsov, “Image sharpness and beam focus VLSI sensors for adaptive optics,” IEEE Sens. J. 2, 680–690 (2002).

[CrossRef]

M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002).

[CrossRef]

M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. 17, 1440–1453 (2000).

[CrossRef]

M. A. Vorontsov, G. W. Carhart, and J. C. Ricklin, “Adaptive phase-distortion correction based on parallel gradient-descent optimization,” Opt. Lett. 22, 907–909 (1997).

[CrossRef]

J. L. Steger and R. F. Warming, “Flux vector splitting of the inviscid gasdynamic equations with application to finite difference method,” J. Comput. Phys. 40, 263–293 (1981).

[CrossRef]

H. C. Yee, N. D. Sandham, and M. J. Djomehri, “Low-dissipative high-order shock-capturing methods using characteristic-based filters,” J. Comput. Phys. 150, 199–238 (1999).

[CrossRef]

N. D. Sandham and H. C. Yee, “A numerical study of a class of TVD schemes for compressible mixing layers,” NASA TM-102194 (NASA, 1989).

R. M. Rennie, D. A. Duffin, and E. J. Jumper, “Characterization and aero-optical correction of a forced two-dimensional weakly compressible shear layer,” AIAA J. 46, 2787–2795 (2008).

[CrossRef]

A. P. Freeman and H. J. Catrakis, “Direction reduction of aero-optical aberrations by large structure suppression control in turbulence,” AIAA J. 46, 2582–2590 (2008).

[CrossRef]

C. M. Ho and P. Huerre, “Perturbed free shear layers,” Annu. Rev. Fluid Mech. 16, 365–424 (1984).

[CrossRef]

T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, “Microelectromechanical deformable mirrors,” IEEE J. Sel. Top. Quantum Electron. 5, 83–89 (1999).

[CrossRef]

M. Cohen, G. Cauwenberghs, and M. A. Vorontsov, “Image sharpness and beam focus VLSI sensors for adaptive optics,” IEEE Sens. J. 2, 680–690 (2002).

[CrossRef]

H. C. Yee, N. D. Sandham, and M. J. Djomehri, “Low-dissipative high-order shock-capturing methods using characteristic-based filters,” J. Comput. Phys. 150, 199–238 (1999).

[CrossRef]

S. Pirozzoli, “Conservative hybrid compact-WENO schemes for shock-turbulence interaction,” J. Comput. Phys. 178, 81–117 (2002).

[CrossRef]

J. L. Steger and R. F. Warming, “Flux vector splitting of the inviscid gasdynamic equations with application to finite difference method,” J. Comput. Phys. 40, 263–293 (1981).

[CrossRef]

S. K. Lele, “Compact finite difference schemes with spectral-like resolution,” J. Comput. Phys. 103, 16–42 (1992).

[CrossRef]

C. W. Shu and S. Osher, “Efficient implementation of essentially non-oscillatary shock capturing schemes,” J. Comput. Phys. 77, 439–471 (1988).

[CrossRef]

T. J. Poinsot and S. K. Lele, “Boundary conditions for direct simulations of compressible viscous flows,” J. Comput. Phys. 101, 104–129 (1992).

[CrossRef]

C. Pantano and S. Sarkar, “A study of compressibility effects in the high-speed turbulent shear layer using direct simulation,” J. Fluid Mech. 451, 329–371 (2002).

[CrossRef]

R. A. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through imaging sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974).

[CrossRef]

T. R. O’Meara, “The multidither principle in adaptive optics,” J. Opt. Soc. Am. 67, 306–315 (1977).

[CrossRef]

M. A. Vorontsov, G. W. Carhart, M. Cohen, and G. Cauwenberghs, “Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration,” J. Opt. Soc. Am. 17, 1440–1453 (2000).

[CrossRef]

G. Vdovin, S. Middelhoek, and P. M. Sarro, “Technology and applications of micromechined silicon adaptive mirrors,” Opt. Eng. 36, 1382–1390 (1997).

[CrossRef]

J. W. Hardy, “Active optics: a new technology for the control of light,” Proc. IEEE 66, 651–697 (1978).

[CrossRef]

E. J. Jumper and E. J. Fitzgerald, “Recent advances in aero-optics,” Prog. Aerosp. Sci. 37, 299–339 (2001).

[CrossRef]

S. Stanley and S. Sarkar, “Simulations of spatially developing two-dimensional shear layers and jets,” Theor. Comput. Fluid Dyn. 9, 121–147 (1997).

[CrossRef]

J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer (Taylor & Francis, 1997), Chap. 5.1.

S. K. Lele, “Direct numerical simulation of compressible free shear flows,” AIAA paper 1989-0374 (American Institute of Aeronautics and Astronautics, 1989).

N. D. Sandham and H. C. Yee, “A numerical study of a class of TVD schemes for compressible mixing layers,” NASA TM-102194 (NASA, 1989).

J. C. Spall, Introduction to Stochastic Search and Optimization (Wiley, 2003), Chap. 7.

R. K. Tyson, Principles of Adaptive Optics (Academic, 1991).

R. M. Rennie, J. P. Siegenthaler, and E. J. Jumper, “Forcing of a two-dimensional, weakly-compressed subsonic free shear layer,” AIAA paper 2006–0561 (American Institute of Aeronautics and Astronautics, 2006).

K. G. Gilbert and L. J. Otten, eds., Aero-Optical Phenomena (AIAA, 1982).

J. Seidel, S. Seigel, and T. McLaughlin, “Feedback flow control of a shear layer for aero-optical aberrations,” AIAA paper 2010-0356 (American Institute of Aeronautics and Astronautics, 2010).