Abstract

We describe a methodology for determining the volume scattering function β(ψ) of aqueous particle suspensions from measurements with a laboratory multi-angle light scattering instrument called DAWN (Wyatt Technology Corporation). In addition to absolute and angular calibration, the key component of the method is the algorithm correcting for reflection errors that reduce the percent error in β(ψ) from as much as 300% to <13% at backward scattering angles. The method is optimized and tested with simulations of three-dimensional radiative transfer of exact measurement geometry including the key components of the instrument and also validated experimentally using aqueous suspensions of polystyrene beads. Example applications of the method to samples of oceanic waters and comparisons of these measurements with results obtained with other light scattering instruments are presented.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  2. M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water (Academic, 2007).
  3. A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
    [CrossRef]
  4. D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
    [CrossRef]
  5. D. Stramski and S. B. Woźniak, “On the role of colloidal particles in light scattering in the sea,” Limnol. Oceanogr. 50, 1581–1591 (2005).
    [CrossRef]
  6. T. J. Petzold, “Volume scattering functions for selected ocean waters,” Rep. 72–78 (Scripps Institution of Oceanography, 1972).
  7. A. Morel, “Diffusion de la lumière par les eaux de mer. Résultats expérimentaux et approche théorique,” (NATO, 1973).
  8. G. Kullenberg, “Observations of light scattering functions in two oceanic areas,” Deep-Sea Res. A 31, 295–316 (1984).
    [CrossRef]
  9. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
    [CrossRef]
  10. M. Jonasz and H. Prandtke, “Comparison of measured and computed light scattering in the Baltic,” Tellus 38B, 144–157 (1986).
    [CrossRef]
  11. M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563–571 (2003).
    [CrossRef]
  12. M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
    [CrossRef]
  13. M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013, (2006).
    [CrossRef]
  14. M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605–3619 (2006).
    [CrossRef]
  15. J. F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
    [CrossRef]
  16. J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
    [CrossRef]
  17. M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
    [CrossRef]
  18. K. G. Privoznik, K. J. Daniel, and F. P. Incropera, “Absorption, extinction and phase function measurements for algal suspensions of Chlorella pyrenoidosa,” J. Quant. Spectrosc. Radiat. Transfer 20, 345–352 (1978).
    [CrossRef]
  19. M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34, 1587–1600 (1989).
    [CrossRef]
  20. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
    [CrossRef]
  21. K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870–876 (1998).
    [CrossRef]
  22. K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
    [CrossRef]
  23. I. MacCallum, A. Cunningham, and D. McKee, “The measurement and modelling of light scattering by phytoplankton cells at narrow forward angles,” J. Opt. A 6, 698–702 (2004).
    [CrossRef]
  24. J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).
  25. X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
    [CrossRef]
  26. R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997).
    [CrossRef]
  27. J. R. V. Zaneveld, S. Pegau, and J. L. Mueller, “Volume scattering function and backscattering coefficients: instrument, characterization, field measurements and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols, NASA/TM 2003-211621/Rev4-Vol.IV, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 65–76.
  28. Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168, 89–114 (2000).
    [CrossRef]
  29. Y. C. Agrawal, “The optical volume scattering function: temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50, 1787–1794 (2005).
    [CrossRef]
  30. R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024(2010).
    [CrossRef]
  31. Wyatt Technology Corporation, Hardware Manual for the DAWN EOS Light Sscattering Instrument (Wyatt Technology, 2002).
  32. P. J. Wyatt, “Light scattering and the absolute characterization of macromolecules,” Anal. Chim. Acta 272, 1–40(1993).
    [CrossRef]
  33. P. J. Wyatt, “Multiangle light scattering: the basic tool for macromolecular characterization,” Instrum. Sci. Technolog. 25, 1–18 (1997).
    [CrossRef]
  34. P. J. Wyatt, “Submicrometer particle sizing by multiangle light scattering following fractionation,” J. Colloid Interface Sci. 197, 9–20 (1998).
    [CrossRef]
  35. W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
    [CrossRef]
  36. W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
    [CrossRef]
  37. J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
    [CrossRef]
  38. W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999).
    [CrossRef]
  39. W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
    [CrossRef]
  40. W. M. Balch, D. T. Drapeau, J. J. Fritz, B. C. Bowler, and J. Nolan, “Optical backscattering in the Arabian Sea—continuous underway measurements of particulate inorganic and organic carbon,” Deep-Sea Res. I 48, 2423–2452 (2001).
    [CrossRef]
  41. W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
    [CrossRef]
  42. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
    [CrossRef]
  43. M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.
  44. W. M. Balch and D. T. Drapeau, “Backscattering by coccolithophorids and cocoliths: sample preparation, measurement and analysis protocol,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 5, Vol. V: Biogeochemical ad Bio-Optical Measurements and Data Analysis Protocols, NASA/TM 2003-211621/Rev5-Vol. V, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 27–36.
  45. J. P. Kratohvil, G. Dezelic, E. Matijevic, and M. Kerker, “Calibration of light-scattering instruments—critical survey,” J. Polym. Sci. 57, 59–77 (1962).
    [CrossRef]
  46. G. Kullenberg, “Scattering of light by Sargasso Sea water,” Deep-Sea Res. 15, 423–432 (1968).
    [CrossRef]
  47. E. S. Fry, “Absolute calibration of a scatterance meter,” in Suspended solids in water, R. J. Gibbs, ed. (Plenum, 1974), pp. 101–109.
  48. M. Jonasz, “Volume scattering function measurement error: effect of angular resolution of the nephelometer,” Appl. Opt. 29, 64–70 (1990).
    [CrossRef]
  49. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).
  50. R. F. Stamm and P. A. Button, “Rayleigh ratio (absolute turbidity levels) for benzene, carbon tetrachloride, and toluene,” J. Chem. Phys. 21, 1304–1305 (1953).
    [CrossRef]
  51. W. Kaye and J. B. McDaniel, “Low-angle laser light scattering—Rayleigh factors and depolarization ratios,” Appl. Opt. 13, 1934–1937 (1974).
    [CrossRef]
  52. P. Wyatt, Wyatt Technology Corporation, Santa Barbara, Calif. (personal communication, 2007).
  53. M. Debenham and G. D. Dew, “The refractive index of toluene in the visible spectral region,” J. Phys. E 14, 544–545 (1981).
    [CrossRef]
  54. D. Bauer and A. Morel, “Etude aux petits angles de l’indicatrice de diffusion de la lumière par les eaux de mer,” Ann. Geophys. 23, 109–123 (1967).
  55. C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
    [CrossRef]
  56. R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some Rhodamine dyes,” J. Lumin. 27, 455–462 (1982).
    [CrossRef]
  57. H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).
  58. D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
    [CrossRef]
  59. H. Claustre, A. Sciandra, and D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5, 679–691 (2008).
    [CrossRef]
  60. H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
    [CrossRef]
  61. M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the 'clearest' natural waters,” Biogeosciences 4, 1041–1058 (2007).
    [CrossRef]
  62. H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
    [CrossRef]
  63. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  64. D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
    [CrossRef]
  65. N. G. Jerlov, Marine Optics (Elsevier, 1976).
  66. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University, 1994).
  67. B. C. Cho and F. Azam, “Biogeochemical significance of bacterial biomass in the oceans euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
    [CrossRef]
  68. I. Koike, S. Hara, K. Terauchi, and K. Kugure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
    [CrossRef]
  69. E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49, 5415–5436 (2010).
    [CrossRef]
  70. A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
    [CrossRef]
  71. G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
    [CrossRef]
  72. C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
    [CrossRef]
  73. A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. Steeman-Nielsen, eds. (Academic, 1974), pp. 1–24.
  74. R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
    [CrossRef]
  75. X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
    [CrossRef]
  76. C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028, (2010).
    [CrossRef]

2012 (1)

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

2010 (4)

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024(2010).
[CrossRef]

J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
[CrossRef]

C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028, (2010).
[CrossRef]

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49, 5415–5436 (2010).
[CrossRef]

2009 (1)

2008 (1)

H. Claustre, A. Sciandra, and D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5, 679–691 (2008).
[CrossRef]

2007 (4)

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the 'clearest' natural waters,” Biogeosciences 4, 1041–1058 (2007).
[CrossRef]

J. F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
[CrossRef]

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).

2006 (3)

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013, (2006).
[CrossRef]

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605–3619 (2006).
[CrossRef]

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

2005 (3)

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
[CrossRef]

D. Stramski and S. B. Woźniak, “On the role of colloidal particles in light scattering in the sea,” Limnol. Oceanogr. 50, 1581–1591 (2005).
[CrossRef]

Y. C. Agrawal, “The optical volume scattering function: temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50, 1787–1794 (2005).
[CrossRef]

2004 (3)

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
[CrossRef]

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

I. MacCallum, A. Cunningham, and D. McKee, “The measurement and modelling of light scattering by phytoplankton cells at narrow forward angles,” J. Opt. A 6, 698–702 (2004).
[CrossRef]

2003 (3)

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563–571 (2003).
[CrossRef]

X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
[CrossRef]

2002 (4)

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef]

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

2001 (2)

W. M. Balch, D. T. Drapeau, J. J. Fritz, B. C. Bowler, and J. Nolan, “Optical backscattering in the Arabian Sea—continuous underway measurements of particulate inorganic and organic carbon,” Deep-Sea Res. I 48, 2423–2452 (2001).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

2000 (2)

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168, 89–114 (2000).
[CrossRef]

1999 (2)

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999).
[CrossRef]

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

1998 (5)

H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

P. J. Wyatt, “Submicrometer particle sizing by multiangle light scattering following fractionation,” J. Colloid Interface Sci. 197, 9–20 (1998).
[CrossRef]

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870–876 (1998).
[CrossRef]

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

1997 (3)

1994 (2)

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[CrossRef]

1993 (1)

P. J. Wyatt, “Light scattering and the absolute characterization of macromolecules,” Anal. Chim. Acta 272, 1–40(1993).
[CrossRef]

1991 (2)

A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

1990 (3)

B. C. Cho and F. Azam, “Biogeochemical significance of bacterial biomass in the oceans euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
[CrossRef]

I. Koike, S. Hara, K. Terauchi, and K. Kugure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[CrossRef]

M. Jonasz, “Volume scattering function measurement error: effect of angular resolution of the nephelometer,” Appl. Opt. 29, 64–70 (1990).
[CrossRef]

1989 (1)

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34, 1587–1600 (1989).
[CrossRef]

1986 (1)

M. Jonasz and H. Prandtke, “Comparison of measured and computed light scattering in the Baltic,” Tellus 38B, 144–157 (1986).
[CrossRef]

1984 (2)

G. Kullenberg, “Observations of light scattering functions in two oceanic areas,” Deep-Sea Res. A 31, 295–316 (1984).
[CrossRef]

K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
[CrossRef]

1982 (1)

R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some Rhodamine dyes,” J. Lumin. 27, 455–462 (1982).
[CrossRef]

1981 (1)

M. Debenham and G. D. Dew, “The refractive index of toluene in the visible spectral region,” J. Phys. E 14, 544–545 (1981).
[CrossRef]

1978 (1)

K. G. Privoznik, K. J. Daniel, and F. P. Incropera, “Absorption, extinction and phase function measurements for algal suspensions of Chlorella pyrenoidosa,” J. Quant. Spectrosc. Radiat. Transfer 20, 345–352 (1978).
[CrossRef]

1974 (1)

1968 (1)

G. Kullenberg, “Scattering of light by Sargasso Sea water,” Deep-Sea Res. 15, 423–432 (1968).
[CrossRef]

1967 (1)

D. Bauer and A. Morel, “Etude aux petits angles de l’indicatrice de diffusion de la lumière par les eaux de mer,” Ann. Geophys. 23, 109–123 (1967).

1962 (1)

J. P. Kratohvil, G. Dezelic, E. Matijevic, and M. Kerker, “Calibration of light-scattering instruments—critical survey,” J. Polym. Sci. 57, 59–77 (1962).
[CrossRef]

1953 (1)

R. F. Stamm and P. A. Button, “Rayleigh ratio (absolute turbidity levels) for benzene, carbon tetrachloride, and toluene,” J. Chem. Phys. 21, 1304–1305 (1953).
[CrossRef]

Agrawal, Y. C.

Y. C. Agrawal, “The optical volume scattering function: temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50, 1787–1794 (2005).
[CrossRef]

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168, 89–114 (2000).
[CrossRef]

Ahn, Y.-H.

A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

Ashe, A.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
[CrossRef]

Aursland, K.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).

Azam, F.

J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
[CrossRef]

B. C. Cho and F. Azam, “Biogeochemical significance of bacterial biomass in the oceans euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
[CrossRef]

Babin, M.

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49, 5415–5436 (2010).
[CrossRef]

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

Balch, W. M.

W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
[CrossRef]

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

W. M. Balch, D. T. Drapeau, J. J. Fritz, B. C. Bowler, and J. Nolan, “Optical backscattering in the Arabian Sea—continuous underway measurements of particulate inorganic and organic carbon,” Deep-Sea Res. I 48, 2423–2452 (2001).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
[CrossRef]

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999).
[CrossRef]

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870–876 (1998).
[CrossRef]

W. M. Balch and D. T. Drapeau, “Backscattering by coccolithophorids and cocoliths: sample preparation, measurement and analysis protocol,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 5, Vol. V: Biogeochemical ad Bio-Optical Measurements and Data Analysis Protocols, NASA/TM 2003-211621/Rev5-Vol. V, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 27–36.

Baudoux, A.-C.

J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
[CrossRef]

Bauer, D.

D. Bauer and A. Morel, “Etude aux petits angles de l’indicatrice de diffusion de la lumière par les eaux de mer,” Ann. Geophys. 23, 109–123 (1967).

Berseneva, G. A.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
[CrossRef]

Berthon, J. F.

Bi, L.

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Bindhu, C. V.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

Booth, E.

W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

Booth, E. S.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
[CrossRef]

Boss, E.

Bowler, B. C.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
[CrossRef]

W. M. Balch, D. T. Drapeau, J. J. Fritz, B. C. Bowler, and J. Nolan, “Optical backscattering in the Arabian Sea—continuous underway measurements of particulate inorganic and organic carbon,” Deep-Sea Res. I 48, 2423–2452 (2001).
[CrossRef]

Brock, R.

X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Brown, C. W.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

Buiteveld, H.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Buonassissi, C. J.

C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028, (2010).
[CrossRef]

Button, P. A.

R. F. Stamm and P. A. Button, “Rayleigh ratio (absolute turbidity levels) for benzene, carbon tetrachloride, and toluene,” J. Chem. Phys. 21, 1304–1305 (1953).
[CrossRef]

Chami, M.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605–3619 (2006).
[CrossRef]

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013, (2006).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
[CrossRef]

Charlton, F.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Cho, B. C.

B. C. Cho and F. Azam, “Biogeochemical significance of bacterial biomass in the oceans euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
[CrossRef]

Churilova, T. Y.

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
[CrossRef]

Claustre, H.

H. Claustre, A. Sciandra, and D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5, 679–691 (2008).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the 'clearest' natural waters,” Biogeosciences 4, 1041–1058 (2007).
[CrossRef]

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

Corkan, L. A.

H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Cucci, T. L.

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999).
[CrossRef]

Cunningham, A.

I. MacCallum, A. Cunningham, and D. McKee, “The measurement and modelling of light scattering by phytoplankton cells at narrow forward angles,” J. Opt. A 6, 698–702 (2004).
[CrossRef]

Czerski, H.

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Dana, D. R.

Daniel, K. J.

K. G. Privoznik, K. J. Daniel, and F. P. Incropera, “Absorption, extinction and phase function measurements for algal suspensions of Chlorella pyrenoidosa,” J. Quant. Spectrosc. Radiat. Transfer 20, 345–352 (1978).
[CrossRef]

de Haan, J. F.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Debenham, M.

M. Debenham and G. D. Dew, “The refractive index of toluene in the visible spectral region,” J. Phys. E 14, 544–545 (1981).
[CrossRef]

Dekker, A. G.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Dew, G. D.

M. Debenham and G. D. Dew, “The refractive index of toluene in the visible spectral region,” J. Phys. E 14, 544–545 (1981).
[CrossRef]

Dezelic, G.

J. P. Kratohvil, G. Dezelic, E. Matijevic, and M. Kerker, “Calibration of light-scattering instruments—critical survey,” J. Polym. Sci. 57, 59–77 (1962).
[CrossRef]

Dierssen, H. M.

C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028, (2010).
[CrossRef]

Donze, M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Doxaran, D.

Drapeau, D. T.

W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
[CrossRef]

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

W. M. Balch, D. T. Drapeau, J. J. Fritz, B. C. Bowler, and J. Nolan, “Optical backscattering in the Arabian Sea—continuous underway measurements of particulate inorganic and organic carbon,” Deep-Sea Res. I 48, 2423–2452 (2001).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
[CrossRef]

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999).
[CrossRef]

W. M. Balch and D. T. Drapeau, “Backscattering by coccolithophorids and cocoliths: sample preparation, measurement and analysis protocol,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 5, Vol. V: Biogeochemical ad Bio-Optical Measurements and Data Analysis Protocols, NASA/TM 2003-211621/Rev5-Vol. V, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 27–36.

Du, H.

H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Dubranna, J.

J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
[CrossRef]

Erga, S. R.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).

Fletcher, A. N.

R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some Rhodamine dyes,” J. Lumin. 27, 455–462 (1982).
[CrossRef]

Forand, J. L.

G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[CrossRef]

Fournier, G. R.

G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[CrossRef]

M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water (Academic, 2007).

Freeman, S. A.

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the 'clearest' natural waters,” Biogeosciences 4, 1041–1058 (2007).
[CrossRef]

Fritz, J. J.

W. M. Balch, D. T. Drapeau, J. J. Fritz, B. C. Bowler, and J. Nolan, “Optical backscattering in the Arabian Sea—continuous underway measurements of particulate inorganic and organic carbon,” Deep-Sea Res. I 48, 2423–2452 (2001).
[CrossRef]

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999).
[CrossRef]

Fry, E. S.

Frye, J. M.

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
[CrossRef]

Fuh, R. C. A.

H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Goes, J. I.

W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
[CrossRef]

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

Grob, C.

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

Guillard, R. R. L.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

Hakvoort, J. H. M.

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

Hara, S.

I. Koike, S. Hara, K. Terauchi, and K. Kugure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[CrossRef]

Harilal, S. S.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

Hoogenboom, H. J.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Hovenier, J. W.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Hu, X.

X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

Hunt, A. J.

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34, 1587–1600 (1989).
[CrossRef]

Huot, Y.

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the 'clearest' natural waters,” Biogeosciences 4, 1041–1058 (2007).
[CrossRef]

Incropera, F. P.

K. G. Privoznik, K. J. Daniel, and F. P. Incropera, “Absorption, extinction and phase function measurements for algal suspensions of Chlorella pyrenoidosa,” J. Quant. Spectrosc. Radiat. Transfer 20, 345–352 (1978).
[CrossRef]

Jacobs, K.

X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, 1976).

Johnson, B.

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Jonasz, M.

M. Jonasz, “Volume scattering function measurement error: effect of angular resolution of the nephelometer,” Appl. Opt. 29, 64–70 (1990).
[CrossRef]

M. Jonasz and H. Prandtke, “Comparison of measured and computed light scattering in the Baltic,” Tellus 38B, 144–157 (1986).
[CrossRef]

M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water (Academic, 2007).

Kattawar, G.

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Kaye, W.

Kerker, M.

J. P. Kratohvil, G. Dezelic, E. Matijevic, and M. Kerker, “Calibration of light-scattering instruments—critical survey,” J. Polym. Sci. 57, 59–77 (1962).
[CrossRef]

Khomenko, G.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013, (2006).
[CrossRef]

Khomenko, G. A.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605–3619 (2006).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
[CrossRef]

Kiefer, D. A.

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

Kilpatrick, K. A.

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999).
[CrossRef]

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870–876 (1998).
[CrossRef]

Koike, I.

I. Koike, S. Hara, K. Terauchi, and K. Kugure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[CrossRef]

Korotaev, G.

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013, (2006).
[CrossRef]

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Korotaev, G. K.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605–3619 (2006).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
[CrossRef]

Kratohvil, J. P.

J. P. Kratohvil, G. Dezelic, E. Matijevic, and M. Kerker, “Calibration of light-scattering instruments—critical survey,” J. Polym. Sci. 57, 59–77 (1962).
[CrossRef]

Król, T.

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

Kubin, R. F.

R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some Rhodamine dyes,” J. Lumin. 27, 455–462 (1982).
[CrossRef]

Kugure, K.

I. Koike, S. Hara, K. Terauchi, and K. Kugure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[CrossRef]

Kullenberg, G.

G. Kullenberg, “Observations of light scattering functions in two oceanic areas,” Deep-Sea Res. A 31, 295–316 (1984).
[CrossRef]

G. Kullenberg, “Scattering of light by Sargasso Sea water,” Deep-Sea Res. 15, 423–432 (1968).
[CrossRef]

Kuten, E.

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

Lapierre, J. M.

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
[CrossRef]

Lee, M.

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Lee, M. E.

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563–571 (2003).
[CrossRef]

Lee, M. E. G.

Lewis, M.

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Lewis, M. R.

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563–571 (2003).
[CrossRef]

Leymarie, E.

Li, J. Z.

H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Lindsey, J. S.

H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

Lofftus, K.

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34, 1587–1600 (1989).
[CrossRef]

Loisel, H.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Lotsberg, J. K.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).

Lu, J.

X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Ma, X.

X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

MacCallum, I.

I. MacCallum, A. Cunningham, and D. McKee, “The measurement and modelling of light scattering by phytoplankton cells at narrow forward angles,” J. Opt. A 6, 698–702 (2004).
[CrossRef]

Maffione, R. A.

Magde, D.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

Marie, D.

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

Maritorena, S.

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

Marken, E.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013, (2006).
[CrossRef]

Martynov, O. V.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605–3619 (2006).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
[CrossRef]

Matijevic, E.

J. P. Kratohvil, G. Dezelic, E. Matijevic, and M. Kerker, “Calibration of light-scattering instruments—critical survey,” J. Polym. Sci. 57, 59–77 (1962).
[CrossRef]

McDaniel, J. B.

McKee, D.

I. MacCallum, A. Cunningham, and D. McKee, “The measurement and modelling of light scattering by phytoplankton cells at narrow forward angles,” J. Opt. A 6, 698–702 (2004).
[CrossRef]

Mobley, C. D.

Morel, A.

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

D. Bauer and A. Morel, “Etude aux petits angles de l’indicatrice de diffusion de la lumière par les eaux de mer,” Ann. Geophys. 23, 109–123 (1967).

A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. Steeman-Nielsen, eds. (Academic, 1974), pp. 1–24.

A. Morel, “Diffusion de la lumière par les eaux de mer. Résultats expérimentaux et approche théorique,” (NATO, 1973).

Mueller, J. L.

J. R. V. Zaneveld, S. Pegau, and J. L. Mueller, “Volume scattering function and backscattering coefficients: instrument, characterization, field measurements and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols, NASA/TM 2003-211621/Rev4-Vol.IV, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 65–76.

Nampoori, V. P. N.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

Nicolas, J. M.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Nolan, J.

W. M. Balch, D. T. Drapeau, J. J. Fritz, B. C. Bowler, and J. Nolan, “Optical backscattering in the Arabian Sea—continuous underway measurements of particulate inorganic and organic carbon,” Deep-Sea Res. I 48, 2423–2452 (2001).
[CrossRef]

Novotny, J. F.

W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
[CrossRef]

Olseng, C.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).

Pegau, S.

J. R. V. Zaneveld, S. Pegau, and J. L. Mueller, “Volume scattering function and backscattering coefficients: instrument, characterization, field measurements and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols, NASA/TM 2003-211621/Rev4-Vol.IV, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 65–76.

Petzold, T. J.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Rep. 72–78 (Scripps Institution of Oceanography, 1972).

Piskozub, J.

Pope, R. M.

Poteau, A.

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

Pottsmith, H. C.

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168, 89–114 (2000).
[CrossRef]

Prandtke, H.

M. Jonasz and H. Prandtke, “Comparison of measured and computed light scattering in the Baltic,” Tellus 38B, 144–157 (1986).
[CrossRef]

Privoznik, K. G.

K. G. Privoznik, K. J. Daniel, and F. P. Incropera, “Absorption, extinction and phase function measurements for algal suspensions of Chlorella pyrenoidosa,” J. Quant. Spectrosc. Radiat. Transfer 20, 345–352 (1978).
[CrossRef]

Quinby-Hunt, M. S.

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34, 1587–1600 (1989).
[CrossRef]

Reynolds, R. A.

J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
[CrossRef]

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024(2010).
[CrossRef]

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

Schreurs, R.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Sciandra, A.

H. Claustre, A. Sciandra, and D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5, 679–691 (2008).
[CrossRef]

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

Seybold, P. G.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

Shapiro, D.

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34, 1587–1600 (1989).
[CrossRef]

Shybanov, E.

Shybanov, E. B.

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605–3619 (2006).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
[CrossRef]

Stamm, R. F.

R. F. Stamm and P. A. Button, “Rayleigh ratio (absolute turbidity levels) for benzene, carbon tetrachloride, and toluene,” J. Chem. Phys. 21, 1304–1305 (1953).
[CrossRef]

Stamnes, J. J.

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013, (2006).
[CrossRef]

Stramski, D.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024(2010).
[CrossRef]

J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the 'clearest' natural waters,” Biogeosciences 4, 1041–1058 (2007).
[CrossRef]

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

D. Stramski and S. B. Woźniak, “On the role of colloidal particles in light scattering in the sea,” Limnol. Oceanogr. 50, 1581–1591 (2005).
[CrossRef]

D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
[CrossRef]

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

Sullivan, J. M.

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
[CrossRef]

Sundman, L. K.

Terauchi, K.

I. Koike, S. Hara, K. Terauchi, and K. Kugure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[CrossRef]

Twardowski, M. S.

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the 'clearest' natural waters,” Biogeosciences 4, 1041–1058 (2007).
[CrossRef]

Uitz, J.

J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
[CrossRef]

Ulloa, O.

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

Vagle, S.

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Vaillancourt, R. D.

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
[CrossRef]

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999).
[CrossRef]

Vallabhan, C. P. G.

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Vassen, W.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Vaughn, J. M.

W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
[CrossRef]

Vaulot, D.

H. Claustre, A. Sciandra, and D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5, 679–691 (2008).
[CrossRef]

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

Vining, C. L.

W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

Volten, H.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Voss, K. J.

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870–876 (1998).
[CrossRef]

K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
[CrossRef]

Witkowski, K.

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

Wong, R.

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

Wouts, R.

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

Wozniak, S. B.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024(2010).
[CrossRef]

D. Stramski and S. B. Woźniak, “On the role of colloidal particles in light scattering in the sea,” Limnol. Oceanogr. 50, 1581–1591 (2005).
[CrossRef]

Wright, V. M.

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024(2010).
[CrossRef]

J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
[CrossRef]

Wyatt, P.

P. Wyatt, Wyatt Technology Corporation, Santa Barbara, Calif. (personal communication, 2007).

Wyatt, P. J.

P. J. Wyatt, “Submicrometer particle sizing by multiangle light scattering following fractionation,” J. Colloid Interface Sci. 197, 9–20 (1998).
[CrossRef]

P. J. Wyatt, “Multiangle light scattering: the basic tool for macromolecular characterization,” Instrum. Sci. Technolog. 25, 1–18 (1997).
[CrossRef]

P. J. Wyatt, “Light scattering and the absolute characterization of macromolecules,” Anal. Chim. Acta 272, 1–40(1993).
[CrossRef]

Yang, P.

X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

You, Y.

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

Zaneveld, J. R. V.

J. R. V. Zaneveld, S. Pegau, and J. L. Mueller, “Volume scattering function and backscattering coefficients: instrument, characterization, field measurements and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols, NASA/TM 2003-211621/Rev4-Vol.IV, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 65–76.

Zhang, X. D.

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Zibordi, G.

Zielinski, A.

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

Anal. Chim. Acta (1)

P. J. Wyatt, “Light scattering and the absolute characterization of macromolecules,” Anal. Chim. Acta 272, 1–40(1993).
[CrossRef]

Ann. Geophys. (1)

D. Bauer and A. Morel, “Etude aux petits angles de l’indicatrice de diffusion de la lumière par les eaux de mer,” Ann. Geophys. 23, 109–123 (1967).

Appl. Opt. (11)

W. Kaye and J. B. McDaniel, “Low-angle laser light scattering—Rayleigh factors and depolarization ratios,” Appl. Opt. 13, 1934–1937 (1974).
[CrossRef]

K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427–4439 (1984).
[CrossRef]

M. Jonasz, “Volume scattering function measurement error: effect of angular resolution of the nephelometer,” Appl. Opt. 29, 64–70 (1990).
[CrossRef]

R. A. Maffione and D. R. Dana, “Instruments and methods for measuring the backward-scattering coefficient of ocean waters,” Appl. Opt. 36, 6057–6067 (1997).
[CrossRef]

R. M. Pope and E. S. Fry, “Absorption spectrum (380–700 nm) of pure water. 2. Integrating cavity measurements,” Appl. Opt. 36, 8710–8723 (1997).
[CrossRef]

C. D. Mobley, L. K. Sundman, and E. Boss, “Phase function effects on oceanic light fields,” Appl. Opt. 41, 1035–1050 (2002).
[CrossRef]

D. Stramski and J. Piskozub, “Estimation of scattering error in spectrophotometric measurements of light absorption by aquatic particles from three-dimensional radiative transfer simulations,” Appl. Opt. 42, 3634–3646 (2003).
[CrossRef]

M. Chami, E. B. Shybanov, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, and G. K. Korotaev, “Spectral variation of the volume scattering function measured over the full range of scattering angles in a coastal environment,” Appl. Opt. 45, 3605–3619 (2006).
[CrossRef]

J. F. Berthon, E. Shybanov, M. E. G. Lee, and G. Zibordi, “Measurements and modeling of the volume scattering function in the coastal northern Adriatic Sea,” Appl. Opt. 46, 5189–5203 (2007).
[CrossRef]

J. M. Sullivan and M. S. Twardowski, “Angular shape of the oceanic particulate volume scattering function in the backward direction,” Appl. Opt. 48, 6811–6819 (2009).
[CrossRef]

E. Leymarie, D. Doxaran, and M. Babin, “Uncertainties associated to measurements of inherent optical properties in natural waters,” Appl. Opt. 49, 5415–5436 (2010).
[CrossRef]

Biogeosciences (2)

H. Claustre, A. Sciandra, and D. Vaulot, “Introduction to the special section bio-optical and biogeochemical conditions in the South East Pacific in late 2004: the BIOSOPE program,” Biogeosciences 5, 679–691 (2008).
[CrossRef]

M. S. Twardowski, H. Claustre, S. A. Freeman, D. Stramski, and Y. Huot, “Optical backscattering properties of the 'clearest' natural waters,” Biogeosciences 4, 1041–1058 (2007).
[CrossRef]

Deep-Sea Res. (1)

G. Kullenberg, “Scattering of light by Sargasso Sea water,” Deep-Sea Res. 15, 423–432 (1968).
[CrossRef]

Deep-Sea Res. A (1)

G. Kullenberg, “Observations of light scattering functions in two oceanic areas,” Deep-Sea Res. A 31, 295–316 (1984).
[CrossRef]

Deep-Sea Res. I (1)

W. M. Balch, D. T. Drapeau, J. J. Fritz, B. C. Bowler, and J. Nolan, “Optical backscattering in the Arabian Sea—continuous underway measurements of particulate inorganic and organic carbon,” Deep-Sea Res. I 48, 2423–2452 (2001).
[CrossRef]

Instrum. Sci. Technolog. (1)

P. J. Wyatt, “Multiangle light scattering: the basic tool for macromolecular characterization,” Instrum. Sci. Technolog. 25, 1–18 (1997).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

M. E. Lee and M. R. Lewis, “A new method for the measurement of the optical volume scattering function in the upper ocean,” J. Atmos. Ocean. Technol. 20, 563–571 (2003).
[CrossRef]

J. Chem. Phys. (1)

R. F. Stamm and P. A. Button, “Rayleigh ratio (absolute turbidity levels) for benzene, carbon tetrachloride, and toluene,” J. Chem. Phys. 21, 1304–1305 (1953).
[CrossRef]

J. Colloid Interface Sci. (1)

P. J. Wyatt, “Submicrometer particle sizing by multiangle light scattering following fractionation,” J. Colloid Interface Sci. 197, 9–20 (1998).
[CrossRef]

J. Geophys. Res. (8)

R. A. Reynolds, D. Stramski, V. M. Wright, and S. B. Woźniak, “Measurements and characterization of particle size distributions in coastal waters,” J. Geophys. Res. 115, C08024(2010).
[CrossRef]

W. M. Balch, D. T. Drapeau, T. L. Cucci, R. D. Vaillancourt, K. A. Kilpatrick, and J. J. Fritz, “Optical backscattering by calcifying algae: separating the contribution of particulate inorganic and organic carbon fractions,” J. Geophys. Res. 104, 1541–1558 (1999).
[CrossRef]

M. S. Twardowski, X. D. Zhang, S. Vagle, J. M. Sullivan, S. A. Freeman, H. Czerski, Y. You, L. Bi, and G. Kattawar, “The optical volume scattering function in a surf zone inverted to derive sediment and bubble particle subpopulations,” J. Geophys. Res. 117, C00H17 (2012).
[CrossRef]

A. Morel and S. Maritorena, “Bio-optical properties of oceanic waters: a reappraisal,” J. Geophys. Res. 106, 7163–7180 (2001).
[CrossRef]

M. Chami, E. B. Shybanov, T. Y. Churilova, G. A. Khomenko, M. E. G. Lee, O. V. Martynov, G. A. Berseneva, and G. K. Korotaev, “Optical properties of the particles in the Crimea coastal waters (Black Sea),” J. Geophys. Res. 110, C11020, (2005).
[CrossRef]

M. Chami, E. Marken, J. J. Stamnes, G. Khomenko, and G. Korotaev, “Variability of the relationship between the particulate backscattering coefficient and the volume scattering function measured at fixed angles,” J. Geophys. Res. 111, C05013, (2006).
[CrossRef]

H. Loisel, J. M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, “Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean,” J. Geophys. Res. 111, C09024 (2006).
[CrossRef]

C. J. Buonassissi and H. M. Dierssen, “A regional comparison of particle size distributions and the power law approximation in oceanic and estuarine surface waters,” J. Geophys. Res. 115, C10028, (2010).
[CrossRef]

J. Lumin. (1)

R. F. Kubin and A. N. Fletcher, “Fluorescence quantum yields of some Rhodamine dyes,” J. Lumin. 27, 455–462 (1982).
[CrossRef]

J. Mar. Res. (1)

A. Morel and Y.-H. Ahn, “Optics of heterotrophic nanoflagellates and ciliates: a tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells,” J. Mar. Res. 49, 177–202 (1991).
[CrossRef]

J. Opt. A (1)

I. MacCallum, A. Cunningham, and D. McKee, “The measurement and modelling of light scattering by phytoplankton cells at narrow forward angles,” J. Opt. A 6, 698–702 (2004).
[CrossRef]

J. Phys. D (1)

C. V. Bindhu, S. S. Harilal, V. P. N. Nampoori, and C. P. G. Vallabhan, “Studies of nonlinear absorption and aggregation in aqueous solutions of Rhodamine 6G using a transient thermal lens technique,” J. Phys. D 32, 407–411 (1999).
[CrossRef]

J. Phys. E (1)

M. Debenham and G. D. Dew, “The refractive index of toluene in the visible spectral region,” J. Phys. E 14, 544–545 (1981).
[CrossRef]

J. Plankton Res. (1)

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, “Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition and taxonomy,” J. Plankton Res. 26, 191–212 (2004).
[CrossRef]

J. Polym. Sci. (1)

J. P. Kratohvil, G. Dezelic, E. Matijevic, and M. Kerker, “Calibration of light-scattering instruments—critical survey,” J. Polym. Sci. 57, 59–77 (1962).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

K. G. Privoznik, K. J. Daniel, and F. P. Incropera, “Absorption, extinction and phase function measurements for algal suspensions of Chlorella pyrenoidosa,” J. Quant. Spectrosc. Radiat. Transfer 20, 345–352 (1978).
[CrossRef]

Limnol. Oceanogr. (11)

M. S. Quinby-Hunt, A. J. Hunt, K. Lofftus, and D. Shapiro, “Polarized-light scattering studies of marine Chlorella,” Limnol. Oceanogr. 34, 1587–1600 (1989).
[CrossRef]

H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, “Laboratory measurements of angular distributions of light scattered by phytoplankton and silt,” Limnol. Oceanogr. 43, 1180–1197 (1998).
[CrossRef]

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, “Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths,” Limnol. Oceanogr. 43, 870–876 (1998).
[CrossRef]

K. Witkowski, T. Król, A. Zieliński, and E. Kuteń, “A light-scattering matrix for unicellular marine phytoplankton,” Limnol. Oceanogr. 43, 859–869 (1998).
[CrossRef]

D. Stramski and S. B. Woźniak, “On the role of colloidal particles in light scattering in the sea,” Limnol. Oceanogr. 50, 1581–1591 (2005).
[CrossRef]

X. D. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, “The volume scattering function of natural bubble populations,” Limnol. Oceanogr. 47, 1273–1282 (2002).
[CrossRef]

Y. C. Agrawal, “The optical volume scattering function: temporal and vertical variability in the water column off the New Jersey coast,” Limnol. Oceanogr. 50, 1787–1794 (2005).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, R. D. Vaillancourt, J. M. Lapierre, and A. Ashe, “Light scattering by viral suspensions,” Limnol. Oceanogr. 45, 492–498 (2000).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. F. Novotny, D. T. Drapeau, J. I. Goes, E. Booth, J. M. Lapierre, C. L. Vining, and A. Ashe, “Fundamental changes in light scattering associated with infection of marine bacteria by bacteriophage,” Limnol. Oceanogr. 47, 1554–1561 (2002).
[CrossRef]

W. M. Balch, J. M. Vaughn, J. I. Goes, J. F. Novotny, D. T. Drapeau, E. Booth, and C. L. Vining, “Bio-optical consequences of viral infection of phytoplankton: I. Experiments with the cyanobacterium, Synechococcus sp.,” Limnol. Oceanogr. 52, 727–738 (2007).
[CrossRef]

J. Uitz, D. Stramski, A.-C. Baudoux, R. A. Reynolds, V. M. Wright, J. Dubranna, and F. Azam, “Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria,” Limnol. Oceanogr. 55, 2317–2330 (2010).
[CrossRef]

Limnol. Oceanogr. Methods (1)

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. Olseng, “Laboratory measurements of light scattering from marine particles,” Limnol. Oceanogr. Methods 5, 34–40 (2007).

Mar. Ecol. Prog. Ser. (1)

B. C. Cho and F. Azam, “Biogeochemical significance of bacterial biomass in the oceans euphotic zone,” Mar. Ecol. Prog. Ser. 63, 253–259 (1990).
[CrossRef]

Mar. Geol. (1)

Y. C. Agrawal and H. C. Pottsmith, “Instruments for particle size and settling velocity observations in sediment transport,” Mar. Geol. 168, 89–114 (2000).
[CrossRef]

Nature (1)

I. Koike, S. Hara, K. Terauchi, and K. Kugure, “Role of sub-micrometre particles in the ocean,” Nature 345, 242–244 (1990).
[CrossRef]

Photochem. Photobiol. (2)

H. Du, R. C. A. Fuh, J. Z. Li, L. A. Corkan, and J. S. Lindsey, “PhotochemCAD: a computer-aided design and research tool in photochemistry,” Photochem. Photobiol. 68, 141–142 (1998).

D. Magde, R. Wong, and P. G. Seybold, “Fluorescence quantum yields and their relation to lifetimes of Rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields,” Photochem. Photobiol. 75, 327–334 (2002).
[CrossRef]

Phys. Med. Biol. (1)

X. Ma, J. Lu, R. Brock, K. Jacobs, P. Yang, and X. Hu, “Determination of complex refractive index of polystyrene microspheres from 370 to 1610 nm,” Phys. Med. Biol. 48, 4165–4172 (2003).
[CrossRef]

Proc. SPIE (2)

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “The optical properties of pure water,” Proc. SPIE 2258, 174–183 (1994).
[CrossRef]

G. R. Fournier and J. L. Forand, “Analytic phase function for ocean water,” Proc. SPIE 2258, 194–201 (1994).
[CrossRef]

Prog. Oceanogr. (2)

D. Stramski and D. A. Kiefer, “Light scattering by microorganisms in the open ocean,” Prog. Oceanogr. 28, 343–383 (1991).
[CrossRef]

W. M. Balch, D. T. Drapeau, B. C. Bowler, E. S. Booth, J. I. Goes, A. Ashe, and J. M. Frye, “A multi-year record of hydrographic and bio-optical properties in the Gulf of Maine: I. Spatial and temporal variability,” Prog. Oceanogr. 63, 57–98 (2004).
[CrossRef]

Tellus (1)

M. Jonasz and H. Prandtke, “Comparison of measured and computed light scattering in the Baltic,” Tellus 38B, 144–157 (1986).
[CrossRef]

Other (15)

C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (Wiley, 1983).

A. Morel, “Optical properties of pure water and pure seawater,” in Optical Aspects of Oceanography, N. G. Jerlov and E. Steeman-Nielsen, eds. (Academic, 1974), pp. 1–24.

N. G. Jerlov, Marine Optics (Elsevier, 1976).

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge University, 1994).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

M. Babin, D. Stramski, D. Marie, C. Grob, A. Sciandra, R. A. Reynolds, O. Ulloa, D. Vaulot, and H. Claustre, “Backscattering properties of natural picoplankton populations obtained by flow cytometry sorting of open ocean water samples,” in Ocean Optics XVIII, Program & Abstract (2006), p. 31.

W. M. Balch and D. T. Drapeau, “Backscattering by coccolithophorids and cocoliths: sample preparation, measurement and analysis protocol,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 5, Vol. V: Biogeochemical ad Bio-Optical Measurements and Data Analysis Protocols, NASA/TM 2003-211621/Rev5-Vol. V, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 27–36.

E. S. Fry, “Absolute calibration of a scatterance meter,” in Suspended solids in water, R. J. Gibbs, ed. (Plenum, 1974), pp. 101–109.

P. Wyatt, Wyatt Technology Corporation, Santa Barbara, Calif. (personal communication, 2007).

Wyatt Technology Corporation, Hardware Manual for the DAWN EOS Light Sscattering Instrument (Wyatt Technology, 2002).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

M. Jonasz and G. R. Fournier, Light Scattering by Particles in Water (Academic, 2007).

J. R. V. Zaneveld, S. Pegau, and J. L. Mueller, “Volume scattering function and backscattering coefficients: instrument, characterization, field measurements and data analysis protocols,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols, NASA/TM 2003-211621/Rev4-Vol.IV, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 65–76.

T. J. Petzold, “Volume scattering functions for selected ocean waters,” Rep. 72–78 (Scripps Institution of Oceanography, 1972).

A. Morel, “Diffusion de la lumière par les eaux de mer. Résultats expérimentaux et approche théorique,” (NATO, 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic view of the DAWN-EOS from top of the instrument. The cylindrical vial containing the sample is located at the center of the inner donut-shape anodized aluminium block, which is bored with holes of different sizes radially distributed and acting as field stops. The outer donut-shape anodized aluminum block is bored with larger holes that contain interference filters and, peripherally, detectors. The inner part of the holes have a small diameter. The combination of the holes in the inner donut-shape aluminum block and the diameter of the sensitive area of the detector determine the field-of-view of each detector (depicted by the two lines for detector 3 as an example). Detectors 1 and 2 are positioned at a larger distance from the center of the sample vial compared with other detectors. The laser beam travels through the aluminum blocks and the sample through dedicated holes. The details of the instrument design were kindly provided by Wyatt Technology Corporation.

Fig. 2.
Fig. 2.

(a), (b) Schematic representation of two sources of detected light resulting from scattering at an angle (180°ψ) that is opposite to that of nominal detection angle (ψ) combined with reflection onto the cuvette wall. Those two sources sum up with the light scattered at the detection angle (ψ) and, therefore, must be accounted for when processing the DAWN data. The laser beam is depicted by a solid thick arrow, the wall of sample vial by a circle, the path of light scattered at ψ and 180°ψ by a solid thin arrow, and the path of light reflected from the vial wall before (a) and after (b) scattering within the sample vial at 180°ψ by a dotted arrow.

Fig. 3.
Fig. 3.

Comparison of angular normalization coefficients (dimensionless) calculated from Monte Carlo simulation with experimental determinations obtained with the use of Rhodamine 6G and filtered seawater. In this Monte Carlo simulation, the exact geometry illustrated in Fig. 1 was applied, with the precise dimensions kindly provided by Wyatt Technology Corporation. The wall of the borosilicate vial was given a refractive index of 1.513. The sample content was given a refractive index of 1.34 (which approximates water), the absorption coefficient of 0.1m1, the scattering coefficient of 1m1, and an isotropic scattering phase function. Each detector of the instrument served as a counter of light energy packets. A total of 8.34×1010 light energy packets were included in the simulation.

Fig. 4.
Fig. 4.

(a), (b) Number of light energy packets (photons) reaching the DAWN detectors as a function of the angle at which light was initially scattered (single scattering only), as determined from a Monte Carlo radiative transfer simulation assuming that a sample is a particle suspension in seawater. This simulation was run in a similar fashion as described in the caption of Fig. 3, but with different optical properties of the sample. The absorption and scattering coefficients of pure seawater were given the values of 0.04412m1 and 0.002204m1, and those of particles and associated matter 0.113m1 and 1.43m1, respectively. The values for particles and associated matter were derived from the optical model of [70] for a chlorophyll-a concentration of 5mgm3. The scattering phase function for particles was assumed to be a Fournier–Forand function [71] with a particulate backscattering ratio of 0.0183 (parameterization as in [72]). Light energy packets that experienced reflection on the vial’s wall were also counted in this simulation. (c) Signal resulting from light that was both scattered and reflected as a function of the angle at which light was scattered relative to 180ψ, where ψ is the nominal angle of the detector. These results for an isotropic scatterer were obtained from Monte Carlo simulations for the 22.5° detector, which were run in inverse mode (see legend of Table 1 for more details). Results for light energy packets that were scattered within the sample after reflection of the laser beam on the vial’s wall (see Fig. 2a) and for those that were reflected on the vial’s wall after they were scattered within the sample (see Fig. 2b) are shown separately with the blue and red lines, respectively.

Fig. 5.
Fig. 5.

Assessment of the algorithm for correcting the scattering measurements made with the DAWN for reflection when using a borosilicate scintillation vial. These results were obtained from Monte Carlo simulations of radiative transfer (see captions for Figs. 3 and 4). The different lines show the input volume scattering function β(ψ) (solid black), the simulated β(ψ) as it would be measured by the DAWN (red line), the β(ψ) corrected for reflection using our algorithm (blue line), and the percent error in the reflection-corrected β(ψ) relative to the input β(ψ) (dashed line). (a–c) show results for the Fournier–Forand particle scattering function [71] where the particulate backscattering-to-scattering ratio (bbp/bp) is 0.002, 0.01, and 0.0183 (parameterization as in [72]), respectively. For the three Monte Carlo simulations, the sample is composed of particles suspended in seawater with the representative inherent optical properties (IOPs) at 532 nm. The pure seawater scattering function was taken from [73] and its absorption coefficient from [74]. The particle IOPs were assumed to be typical of open ocean water with a chlorophyll-a concentration of 5mgm3 as in Fig. 4. The particle volume scattering function was calculated as the product of the particle scattering coefficient and the Fournier–Forand particle phase function for given bbp/bp values as indicated. The total number of light energy packets included in the Monte Carlo simulations was 230×109, 120×109, and 64×109 for bbp/bp of 0.002, 0.01, and 0.0183, respectively.

Fig. 6.
Fig. 6.

(a) Measured particle size distributions of bead suspensions that were used in the determinations of volume scattering functions shown in (b),Volume scattering functions of 2 μm polystyrene beads suspended in filtered seawater as determined from (i) Mie scattering calculations (solid lines) with inputs including the measured particle size distribution and appropriate refractive index (see text), (ii) measurements on bead suspensions with the DAWN uncorrected for reflection (squares), and (iii) measurements on bead suspensions with the DAWN after correction for reflection with our algorithm (crosses). Results for a master sample (the highest bead concentration) and for the 10× and 100× dilutions of the master sample are shown.

Fig. 7.
Fig. 7.

As in Fig. 6 but for 5 μm polystyrene beads.

Fig. 8.
Fig. 8.

As in Fig. 6 but for 20 μm polystyrene beads.

Fig. 9.
Fig. 9.

Mie calculations of the cumulative percent contribution to particle scattering at two scattering angles ψ as a function of particle diameter. The particle size distribution is modeled as FN(D)Dj, and results are illustrated for four values of j between 4.5, and 3. The calculations are for a light wavelength of 532 nm and assume nonabsorbing spheres with a refractive index of 1.05 relative to water.

Fig. 10.
Fig. 10.

(a) Particle size distribution for three samples collected in the area of San Diego. (b) Volume scattering function for the same three samples, determined according to the protocol presented in this paper, using the equations summarized in Table 2. The volume scattering function measured by [6] in the San Diego Harbor is also shown.

Fig. 11.
Fig. 11.

Comparison of measurements of the particle volume scattering function using diverse instrumentation on natural seawater samples collected at Scripps Pier on three different dates. For each experiment, contemporaneous measurements of βp(ψ) were made with DAWN, LISST-100X, and Hydroscat-6 instruments, and are shown with both logarithmic (top panels) or semilogarithmic (middle panels) scaling. The lower panels depict the measured particle size distribution associated with each sample, and an estimate of the overall slope j.

Tables (2)

Tables Icon

Table 1. Key Characteristics of the DAWN-EOS Instrumenta

Tables Icon

Table 2. Set of Equations for the Determination of β(ψ) Using the DAWN-EOS Instrument in the Batch Mode with a Borosilicate Cylindrical Vial Containing Seawater Samplea

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

β(ψ,λ)=limΔv0I(ψ,λ)E(λ)Δv.
βm(ψ)=N(ψ)Ac(90)sV(ψ)+sH(ψ)2,
βm(ψ)=βV(ψ)+βH(ψ)2,
βV(ψ)=N(ψ)Ac(90)sV(ψ),
βH(ψ)=N(ψ)Ac(90)sH(ψ).
sV(ψ)=VV(ψ)V¯(ψ)darkf(ψ)(VLMVV¯LMdark),
sH(ψ)=VH(ψ)V¯(ψ)darkf(ψ)(VLMHV¯LMdark),
βVt(90)=Act(90)sVt(90),
sVt(90)=VVt(90)V¯(90)darkf(90)(VLMVV¯LMdark).
Acscc=AinsRcorGcor,
Acscc=Ainsns1.797Tga2,
Tga=4ngna(ng+na)2,
Act(90)=Ainsnt1.797Tga2,
Ac(90)=Ainsnw1.797Tga2,
Ac(90)=(nwnt)1.797Act(90),
βru(ψ)=Ac(90)[sVr(ψ)sVb(ψ)]+[sHr(ψ)sHb(ψ)]2,
N(ψ)=βr(ψ)βru(ψ)βru(90)βr(90)=βru(90)βru(ψ).
N(ψ)=βw(ψ)βwu(ψ)βwu(90)βw(90),
Im=I+2IRw+IRw2+2IRw3+,
11Rw2=1+Rw2+Rw4+Rw6+,
Im=[I+2IRw]11Rw2.
ImRw=[I+2IRw]Rw1Rw2.
I=(Im2RwIm)1Rw214Rw2.
β=(βm2Rwβm)1Rw214Rw2.
Rw=rwg+rga2rwgrga1rwgrga,
rwg=(nwngnw+ng)2,
rga=(ngnang+na)2.
Ac(90)=1.08(nwnt)1.797Act(90).

Metrics