Abstract

We report on atmospheric pressure argon plasma-based surface treatment and hybrid laser-plasma ablation of barite crown glass N-BaK4 and heavy flint glass SF5. By pure plasma treatment, a significant surface smoothing, as well as an increase in both the surface energy and the strength of the investigated glass surfaces, was achieved. It was shown that for both glasses, hybrid laser plasma ablation allows an increase in the ablation depth by a factor of 2.1 with respect to pure laser ablation. The ablated volume was increased by an averaged factor of 1.5 for N-BaK4 and 3.7 for SF5.

© 2012 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Gerhard, F. Druon, P. Blandin, M. Hanna, F. Balembois, P. Georges, and F. Falcoz, “Efficient versatile-repetition-rate picosecond source for material processing applications,” Appl. Opt. 47, 967–974 (2008).
    [CrossRef]
  2. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
    [CrossRef]
  3. O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
    [CrossRef]
  4. P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
    [CrossRef]
  5. J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys. A 54, 363–368 (1992).
    [CrossRef]
  6. J. Zhang, K. Sugioka, and K. Midorikawa, “High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers,” Appl. Phys. A 69, S879–S882 (1999).
    [CrossRef]
  7. S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
    [CrossRef]
  8. J. Zhang, K. Sugioka, and K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998).
    [CrossRef]
  9. R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. Atom. Spectr. 17, 1072–1075 (2002).
    [CrossRef]
  10. J. Wang, H. Niino, and A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
    [CrossRef]
  11. T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011).
    [CrossRef]
  12. K. Zimmer, R. Böhme, and B. Rauschenbach, “Laser etching of fused silica using an adsorbed toluene layer,” Appl. Phys. A 79, 1883–1885 (2004).
    [CrossRef]
  13. R. Böhme, K. Zimmer, and B. Rauschenbach, “Laser backside etching of fused silica due to carbon layer ablation,” Appl. Phys. A 82, 325–328 (2006).
    [CrossRef]
  14. C. Gerhard, D. Tasche, S. Brückner, S. Wieneke, and W. Viöl, “Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma,” Opt. Lett. 37, 566–568 (2012).
    [CrossRef]
  15. S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012).
    [CrossRef]
  16. C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: a review,” Spectrochim. Acta B 61, 2–30 (2006).
    [CrossRef]
  17. C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
    [CrossRef]
  18. J. H. Parka, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng. 82, 119–128 (2005).
    [CrossRef]
  19. X. Li, T. Abe, and M. Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma,” Sens. Actuators A 87, 139–145 (2001).
    [CrossRef]
  20. P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55, 191–196 (1999).
    [CrossRef]
  21. T. Akashi, and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16, 1051–1056 (2006).
    [CrossRef]
  22. K. Kolari, V. Saarela, and S. Franssila, “Deep plasma etching of glass for fluidic devices with different mask materials,” J. Micromech. Microeng. 18, 064010 (2008).
    [CrossRef]
  23. X. Li, L. Ling, X. Hua, M. Fukasawa, and G. S. Oehrlein, “Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas,” J. Vac. Sci. Technol. A 21, 284–293 (2003).
    [CrossRef]
  24. J. W. Coburn and H. F. Winters, “Ion- and electron-assisted gas-surface chemistry—an important effect in plasma etching,” J. Appl. Phys. 50, 3189–3196 (1979).
    [CrossRef]
  25. T. Thöniss, G. Adams, and C. Gerhard, “Optical system design—software tools cover envelope calculations to the final engineering drawings,” Opt. Photonik 4, 30–33 (2009).
    [CrossRef]
  26. S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, and W. Viöl, “Plasma-based ionisation spectroscopy for material analysis,” Mater. Test. 53, 639–642 (2011).
  27. T. C. Manley, “The electric characteristics of the ozonator discharge,” ECS Trans. 84, 83–96 (1943).
    [CrossRef]
  28. A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009).
    [CrossRef]
  29. Schott AG, Datasheet: Optical Glass Catalog (2011).
  30. D. H. Kaelble, “Peel adhesion: influence of surface energies and adhesive rheology,” J. Adhes. Sci. Technol. 1, 102–123 (1969).
    [CrossRef]
  31. D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci. 13, 1741–1747 (1969).
    [CrossRef]
  32. A. Paul, Chemistry of Glasses (Chapman and Hall, 1990).
  33. N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels, and N. Sadeghi, “Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements,” J. Appl. Phys. 97, 123305 (2005).
    [CrossRef]
  34. B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012).
    [CrossRef]
  35. S. G. Belostotskiy, V. M. Donnelly, D. J. Economou, and N. Sadeghi, “Spatially resolved measurements of argon metastable (1s5) density in a high pressure microdischarge using diode laser absorption spectroscopy,” IEEE Trans. Plasma Sci. 37, 852–858 (2009).
    [CrossRef]
  36. W. Masterton, E. Slowinski, and C. Stanitski, Chemical Principles (Saunders College, 1983).

2012

C. Gerhard, D. Tasche, S. Brückner, S. Wieneke, and W. Viöl, “Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma,” Opt. Lett. 37, 566–568 (2012).
[CrossRef]

S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012).
[CrossRef]

B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012).
[CrossRef]

2011

S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, and W. Viöl, “Plasma-based ionisation spectroscopy for material analysis,” Mater. Test. 53, 639–642 (2011).

T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011).
[CrossRef]

2010

O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
[CrossRef]

2009

A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009).
[CrossRef]

T. Thöniss, G. Adams, and C. Gerhard, “Optical system design—software tools cover envelope calculations to the final engineering drawings,” Opt. Photonik 4, 30–33 (2009).
[CrossRef]

S. G. Belostotskiy, V. M. Donnelly, D. J. Economou, and N. Sadeghi, “Spatially resolved measurements of argon metastable (1s5) density in a high pressure microdischarge using diode laser absorption spectroscopy,” IEEE Trans. Plasma Sci. 37, 852–858 (2009).
[CrossRef]

2008

K. Kolari, V. Saarela, and S. Franssila, “Deep plasma etching of glass for fluidic devices with different mask materials,” J. Micromech. Microeng. 18, 064010 (2008).
[CrossRef]

C. Gerhard, F. Druon, P. Blandin, M. Hanna, F. Balembois, P. Georges, and F. Falcoz, “Efficient versatile-repetition-rate picosecond source for material processing applications,” Appl. Opt. 47, 967–974 (2008).
[CrossRef]

2006

R. Böhme, K. Zimmer, and B. Rauschenbach, “Laser backside etching of fused silica due to carbon layer ablation,” Appl. Phys. A 82, 325–328 (2006).
[CrossRef]

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: a review,” Spectrochim. Acta B 61, 2–30 (2006).
[CrossRef]

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

T. Akashi, and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16, 1051–1056 (2006).
[CrossRef]

2005

N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels, and N. Sadeghi, “Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements,” J. Appl. Phys. 97, 123305 (2005).
[CrossRef]

J. H. Parka, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng. 82, 119–128 (2005).
[CrossRef]

S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
[CrossRef]

2004

K. Zimmer, R. Böhme, and B. Rauschenbach, “Laser etching of fused silica using an adsorbed toluene layer,” Appl. Phys. A 79, 1883–1885 (2004).
[CrossRef]

2003

X. Li, L. Ling, X. Hua, M. Fukasawa, and G. S. Oehrlein, “Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas,” J. Vac. Sci. Technol. A 21, 284–293 (2003).
[CrossRef]

2002

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. Atom. Spectr. 17, 1072–1075 (2002).
[CrossRef]

2001

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

X. Li, T. Abe, and M. Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma,” Sens. Actuators A 87, 139–145 (2001).
[CrossRef]

1999

P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55, 191–196 (1999).
[CrossRef]

J. Zhang, K. Sugioka, and K. Midorikawa, “High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers,” Appl. Phys. A 69, S879–S882 (1999).
[CrossRef]

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

J. Wang, H. Niino, and A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

1998

1992

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys. A 54, 363–368 (1992).
[CrossRef]

1979

J. W. Coburn and H. F. Winters, “Ion- and electron-assisted gas-surface chemistry—an important effect in plasma etching,” J. Appl. Phys. 50, 3189–3196 (1979).
[CrossRef]

1969

D. H. Kaelble, “Peel adhesion: influence of surface energies and adhesive rheology,” J. Adhes. Sci. Technol. 1, 102–123 (1969).
[CrossRef]

D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci. 13, 1741–1747 (1969).
[CrossRef]

1943

T. C. Manley, “The electric characteristics of the ozonator discharge,” ECS Trans. 84, 83–96 (1943).
[CrossRef]

Abe, T.

X. Li, T. Abe, and M. Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma,” Sens. Actuators A 87, 139–145 (2001).
[CrossRef]

Adams, G.

T. Thöniss, G. Adams, and C. Gerhard, “Optical system design—software tools cover envelope calculations to the final engineering drawings,” Opt. Photonik 4, 30–33 (2009).
[CrossRef]

Akashi, T.

T. Akashi, and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16, 1051–1056 (2006).
[CrossRef]

Baguer, N.

N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels, and N. Sadeghi, “Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements,” J. Appl. Phys. 97, 123305 (2005).
[CrossRef]

Balembois, F.

Belostotskiy, S. G.

S. G. Belostotskiy, V. M. Donnelly, D. J. Economou, and N. Sadeghi, “Spatially resolved measurements of argon metastable (1s5) density in a high pressure microdischarge using diode laser absorption spectroscopy,” IEEE Trans. Plasma Sci. 37, 852–858 (2009).
[CrossRef]

Benedikt, J.

B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012).
[CrossRef]

Blandin, P.

Bogaerts, A.

N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels, and N. Sadeghi, “Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements,” J. Appl. Phys. 97, 123305 (2005).
[CrossRef]

Böhme, R.

R. Böhme, K. Zimmer, and B. Rauschenbach, “Laser backside etching of fused silica due to carbon layer ablation,” Appl. Phys. A 82, 325–328 (2006).
[CrossRef]

K. Zimmer, R. Böhme, and B. Rauschenbach, “Laser etching of fused silica using an adsorbed toluene layer,” Appl. Phys. A 79, 1883–1885 (2004).
[CrossRef]

Böke, M.

B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012).
[CrossRef]

Bonse, J.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

Brückner, S.

C. Gerhard, D. Tasche, S. Brückner, S. Wieneke, and W. Viöl, “Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma,” Opt. Lett. 37, 566–568 (2012).
[CrossRef]

S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012).
[CrossRef]

S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, and W. Viöl, “Plasma-based ionisation spectroscopy for material analysis,” Mater. Test. 53, 639–642 (2011).

Carr, J.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Chen, Q.

S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
[CrossRef]

Chimier, B.

O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
[CrossRef]

Coburn, J. W.

J. W. Coburn and H. F. Winters, “Ion- and electron-assisted gas-surface chemistry—an important effect in plasma etching,” J. Appl. Phys. 50, 3189–3196 (1979).
[CrossRef]

Desmaison, J.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: a review,” Spectrochim. Acta B 61, 2–30 (2006).
[CrossRef]

Donko, Z.

N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels, and N. Sadeghi, “Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements,” J. Appl. Phys. 97, 123305 (2005).
[CrossRef]

Donnelly, V. M.

S. G. Belostotskiy, V. M. Donnelly, D. J. Economou, and N. Sadeghi, “Spatially resolved measurements of argon metastable (1s5) density in a high pressure microdischarge using diode laser absorption spectroscopy,” IEEE Trans. Plasma Sci. 37, 852–858 (2009).
[CrossRef]

Druon, F.

Economou, D. J.

S. G. Belostotskiy, V. M. Donnelly, D. J. Economou, and N. Sadeghi, “Spatially resolved measurements of argon metastable (1s5) density in a high pressure microdischarge using diode laser absorption spectroscopy,” IEEE Trans. Plasma Sci. 37, 852–858 (2009).
[CrossRef]

Emmert, S.

A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009).
[CrossRef]

Esashi, M.

X. Li, T. Abe, and M. Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma,” Sens. Actuators A 87, 139–145 (2001).
[CrossRef]

Falcoz, F.

Fanara, C.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Franssila, S.

K. Kolari, V. Saarela, and S. Franssila, “Deep plasma etching of glass for fluidic devices with different mask materials,” J. Micromech. Microeng. 18, 064010 (2008).
[CrossRef]

Fukasawa, M.

X. Li, L. Ling, X. Hua, M. Fukasawa, and G. S. Oehrlein, “Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas,” J. Vac. Sci. Technol. A 21, 284–293 (2003).
[CrossRef]

Georges, P.

Gerhard, C.

S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012).
[CrossRef]

C. Gerhard, D. Tasche, S. Brückner, S. Wieneke, and W. Viöl, “Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma,” Opt. Lett. 37, 566–568 (2012).
[CrossRef]

S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, and W. Viöl, “Plasma-based ionisation spectroscopy for material analysis,” Mater. Test. 53, 639–642 (2011).

T. Thöniss, G. Adams, and C. Gerhard, “Optical system design—software tools cover envelope calculations to the final engineering drawings,” Opt. Photonik 4, 30–33 (2009).
[CrossRef]

C. Gerhard, F. Druon, P. Blandin, M. Hanna, F. Balembois, P. Georges, and F. Falcoz, “Efficient versatile-repetition-rate picosecond source for material processing applications,” Appl. Opt. 47, 967–974 (2008).
[CrossRef]

Gijbels, R.

N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels, and N. Sadeghi, “Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements,” J. Appl. Phys. 97, 123305 (2005).
[CrossRef]

Gonzalez, J. J.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. Atom. Spectr. 17, 1072–1075 (2002).
[CrossRef]

Hanna, M.

Helmke, A.

A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009).
[CrossRef]

Hoffmeister, D.

A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009).
[CrossRef]

Hoffmeister, J.

S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012).
[CrossRef]

Hua, X.

X. Li, L. Ling, X. Hua, M. Fukasawa, and G. S. Oehrlein, “Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas,” J. Vac. Sci. Technol. A 21, 284–293 (2003).
[CrossRef]

Ihlemann, J.

S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012).
[CrossRef]

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys. A 54, 363–368 (1992).
[CrossRef]

Kaelble, D. H.

D. H. Kaelble, “Peel adhesion: influence of surface energies and adhesive rheology,” J. Adhes. Sci. Technol. 1, 102–123 (1969).
[CrossRef]

Kautek, W.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

Kawaguchi, Y.

T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011).
[CrossRef]

Kelley, J.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Kieffer, J. C.

O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
[CrossRef]

Kolari, K.

K. Kolari, V. Saarela, and S. Franssila, “Deep plasma etching of glass for fluidic devices with different mask materials,” J. Micromech. Microeng. 18, 064010 (2008).
[CrossRef]

Krüger, J.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

Kurosaki, R.

T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011).
[CrossRef]

Kuschel, T.

B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012).
[CrossRef]

Lassonde, P.

O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
[CrossRef]

Lee, J.

J. H. Parka, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng. 82, 119–128 (2005).
[CrossRef]

Lee, N.-E.

J. H. Parka, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng. 82, 119–128 (2005).
[CrossRef]

Leech, P. W.

P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55, 191–196 (1999).
[CrossRef]

Légaré, F.

O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
[CrossRef]

Leprince, P.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: a review,” Spectrochim. Acta B 61, 2–30 (2006).
[CrossRef]

Li, C.

S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
[CrossRef]

Li, X.

X. Li, L. Ling, X. Hua, M. Fukasawa, and G. S. Oehrlein, “Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas,” J. Vac. Sci. Technol. A 21, 284–293 (2003).
[CrossRef]

X. Li, T. Abe, and M. Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma,” Sens. Actuators A 87, 139–145 (2001).
[CrossRef]

Ling, L.

X. Li, L. Ling, X. Hua, M. Fukasawa, and G. S. Oehrlein, “Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas,” J. Vac. Sci. Technol. A 21, 284–293 (2003).
[CrossRef]

Low, D.

S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
[CrossRef]

Lyford, N.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Manley, T. C.

T. C. Manley, “The electric characteristics of the ozonator discharge,” ECS Trans. 84, 83–96 (1943).
[CrossRef]

Mao, S. S.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. Atom. Spectr. 17, 1072–1075 (2002).
[CrossRef]

Mao, X.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. Atom. Spectr. 17, 1072–1075 (2002).
[CrossRef]

Masterton, W.

W. Masterton, E. Slowinski, and C. Stanitski, Chemical Principles (Saunders College, 1983).

Mertens, N.

A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009).
[CrossRef]

Midorikawa, K.

J. Zhang, K. Sugioka, and K. Midorikawa, “High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers,” Appl. Phys. A 69, S879–S882 (1999).
[CrossRef]

J. Zhang, K. Sugioka, and K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998).
[CrossRef]

Narazaki, A.

T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011).
[CrossRef]

Nicholls, J. R.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Niermann, B.

B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012).
[CrossRef]

Niino, H.

T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011).
[CrossRef]

J. Wang, H. Niino, and A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

Nikumb, S.

S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
[CrossRef]

Oehrlein, G. S.

X. Li, L. Ling, X. Hua, M. Fukasawa, and G. S. Oehrlein, “Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas,” J. Vac. Sci. Technol. A 21, 284–293 (2003).
[CrossRef]

Owens, D. K.

D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci. 13, 1741–1747 (1969).
[CrossRef]

Park, H. D.

J. H. Parka, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng. 82, 119–128 (2005).
[CrossRef]

Park, J. S.

J. H. Parka, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng. 82, 119–128 (2005).
[CrossRef]

Parka, J. H.

J. H. Parka, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng. 82, 119–128 (2005).
[CrossRef]

Paul, A.

A. Paul, Chemistry of Glasses (Chapman and Hall, 1990).

Qiu, H.

S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
[CrossRef]

Rauschenbach, B.

R. Böhme, K. Zimmer, and B. Rauschenbach, “Laser backside etching of fused silica due to carbon layer ablation,” Appl. Phys. A 82, 325–328 (2006).
[CrossRef]

K. Zimmer, R. Böhme, and B. Rauschenbach, “Laser etching of fused silica using an adsorbed toluene layer,” Appl. Phys. A 79, 1883–1885 (2004).
[CrossRef]

Reshef, H.

S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
[CrossRef]

Reuter, R.

B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012).
[CrossRef]

Richardson, K.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

Richardson, M.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

Rösner, S.

S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, and W. Viöl, “Plasma-based ionisation spectroscopy for material analysis,” Mater. Test. 53, 639–642 (2011).

Rudolph, P.

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

Russo, R. E.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. Atom. Spectr. 17, 1072–1075 (2002).
[CrossRef]

Saarela, V.

K. Kolari, V. Saarela, and S. Franssila, “Deep plasma etching of glass for fluidic devices with different mask materials,” J. Micromech. Microeng. 18, 064010 (2008).
[CrossRef]

Sadeghi, N.

S. G. Belostotskiy, V. M. Donnelly, D. J. Economou, and N. Sadeghi, “Spatially resolved measurements of argon metastable (1s5) density in a high pressure microdischarge using diode laser absorption spectroscopy,” IEEE Trans. Plasma Sci. 37, 852–858 (2009).
[CrossRef]

N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels, and N. Sadeghi, “Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements,” J. Appl. Phys. 97, 123305 (2005).
[CrossRef]

Sanner, N.

O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
[CrossRef]

Sato, T.

T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011).
[CrossRef]

Schuette, J.

A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009).
[CrossRef]

Sentis, M.

O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
[CrossRef]

Shah, L.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

Shore, P.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Simon, P.

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys. A 54, 363–368 (1992).
[CrossRef]

Slowinski, E.

W. Masterton, E. Slowinski, and C. Stanitski, Chemical Principles (Saunders College, 1983).

Sommer, P.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Stanitski, C.

W. Masterton, E. Slowinski, and C. Stanitski, Chemical Principles (Saunders College, 1983).

Sugioka, K.

J. Zhang, K. Sugioka, and K. Midorikawa, “High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers,” Appl. Phys. A 69, S879–S882 (1999).
[CrossRef]

J. Zhang, K. Sugioka, and K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998).
[CrossRef]

Tasche, D.

Tawney, J.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

Tendero, C.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: a review,” Spectrochim. Acta B 61, 2–30 (2006).
[CrossRef]

Thöniss, T.

T. Thöniss, G. Adams, and C. Gerhard, “Optical system design—software tools cover envelope calculations to the final engineering drawings,” Opt. Photonik 4, 30–33 (2009).
[CrossRef]

Tixier, C.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: a review,” Spectrochim. Acta B 61, 2–30 (2006).
[CrossRef]

Tristant, P.

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: a review,” Spectrochim. Acta B 61, 2–30 (2006).
[CrossRef]

Utéza, O.

O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
[CrossRef]

Viöl, W.

C. Gerhard, D. Tasche, S. Brückner, S. Wieneke, and W. Viöl, “Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma,” Opt. Lett. 37, 566–568 (2012).
[CrossRef]

S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012).
[CrossRef]

S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, and W. Viöl, “Plasma-based ionisation spectroscopy for material analysis,” Mater. Test. 53, 639–642 (2011).

A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009).
[CrossRef]

Wang, J.

J. Wang, H. Niino, and A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

Watanabe, W.

T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011).
[CrossRef]

Wendt, R. C.

D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci. 13, 1741–1747 (1969).
[CrossRef]

Wieneke, S.

C. Gerhard, D. Tasche, S. Brückner, S. Wieneke, and W. Viöl, “Near-surface modification of optical properties of fused silica by low-temperature hydrogenous atmospheric pressure plasma,” Opt. Lett. 37, 566–568 (2012).
[CrossRef]

S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012).
[CrossRef]

S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, and W. Viöl, “Plasma-based ionisation spectroscopy for material analysis,” Mater. Test. 53, 639–642 (2011).

Winter, J.

B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012).
[CrossRef]

Winters, H. F.

J. W. Coburn and H. F. Winters, “Ion- and electron-assisted gas-surface chemistry—an important effect in plasma etching,” J. Appl. Phys. 50, 3189–3196 (1979).
[CrossRef]

Wolff, B.

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys. A 54, 363–368 (1992).
[CrossRef]

Yabe, A.

J. Wang, H. Niino, and A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

Yoshimura, Y.

T. Akashi, and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16, 1051–1056 (2006).
[CrossRef]

Zhang, J.

J. Zhang, K. Sugioka, and K. Midorikawa, “High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers,” Appl. Phys. A 69, S879–S882 (1999).
[CrossRef]

J. Zhang, K. Sugioka, and K. Midorikawa, “Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser,” Opt. Lett. 23, 1486–1488 (1998).
[CrossRef]

Zheng, H. Y.

S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
[CrossRef]

Zimmer, K.

R. Böhme, K. Zimmer, and B. Rauschenbach, “Laser backside etching of fused silica due to carbon layer ablation,” Appl. Phys. A 82, 325–328 (2006).
[CrossRef]

K. Zimmer, R. Böhme, and B. Rauschenbach, “Laser etching of fused silica using an adsorbed toluene layer,” Appl. Phys. A 79, 1883–1885 (2004).
[CrossRef]

Adv. Eng. Mater.

C. Fanara, P. Shore, J. R. Nicholls, N. Lyford, J. Kelley, J. Carr, and P. Sommer, “A new reactive atom plasma technology (RAPT) for precision machining: the etching of ULE surfaces,” Adv. Eng. Mater. 8, 933–939 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. A

P. Rudolph, J. Bonse, J. Krüger, and W. Kautek, “Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass,” Appl. Phys. A 69, S763–S766 (1999).
[CrossRef]

J. Ihlemann, B. Wolff, and P. Simon, “Nanosecond and femtosecond excimer laser ablation of fused silica,” Appl. Phys. A 54, 363–368 (1992).
[CrossRef]

J. Zhang, K. Sugioka, and K. Midorikawa, “High-quality and high-efficiency machining of glass materials by laser-induced plasma-assisted ablation using conventional nanosecond UV, visible, and infrared lasers,” Appl. Phys. A 69, S879–S882 (1999).
[CrossRef]

J. Wang, H. Niino, and A. Yabe, “One-step microfabrication of fused silica by laser ablation of an organic solution,” Appl. Phys. A 68, 111–113 (1999).
[CrossRef]

K. Zimmer, R. Böhme, and B. Rauschenbach, “Laser etching of fused silica using an adsorbed toluene layer,” Appl. Phys. A 79, 1883–1885 (2004).
[CrossRef]

R. Böhme, K. Zimmer, and B. Rauschenbach, “Laser backside etching of fused silica due to carbon layer ablation,” Appl. Phys. A 82, 325–328 (2006).
[CrossRef]

Appl. Surf. Sci.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Femtosecond laser deep hole drilling of silicate glasses in air,” Appl. Surf. Sci. 183, 151–164 (2001).
[CrossRef]

ECS Trans.

T. C. Manley, “The electric characteristics of the ozonator discharge,” ECS Trans. 84, 83–96 (1943).
[CrossRef]

IEEE Trans. Plasma Sci.

S. G. Belostotskiy, V. M. Donnelly, D. J. Economou, and N. Sadeghi, “Spatially resolved measurements of argon metastable (1s5) density in a high pressure microdischarge using diode laser absorption spectroscopy,” IEEE Trans. Plasma Sci. 37, 852–858 (2009).
[CrossRef]

J. Adhes. Sci. Technol.

D. H. Kaelble, “Peel adhesion: influence of surface energies and adhesive rheology,” J. Adhes. Sci. Technol. 1, 102–123 (1969).
[CrossRef]

J. Anal. Atom. Spectr.

R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond laser ablation ICP-MS,” J. Anal. Atom. Spectr. 17, 1072–1075 (2002).
[CrossRef]

J. Appl. Phys.

N. Baguer, A. Bogaerts, Z. Donko, R. Gijbels, and N. Sadeghi, “Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements,” J. Appl. Phys. 97, 123305 (2005).
[CrossRef]

J. W. Coburn and H. F. Winters, “Ion- and electron-assisted gas-surface chemistry—an important effect in plasma etching,” J. Appl. Phys. 50, 3189–3196 (1979).
[CrossRef]

J. Appl. Polym. Sci.

D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” J. Appl. Polym. Sci. 13, 1741–1747 (1969).
[CrossRef]

J. Laser Micro Nanoeng.

O. Utéza, N. Sanner, B. Chimier, M. Sentis, P. Lassonde, F. Légaré, and J. C. Kieffer, “Surface ablation of dielectrics with sub-10 fs to 300 fs laser pulses: crater depth and diameter, and efficiency as a function of laser intensity,” J. Laser Micro Nanoeng. 5, 238–241 (2010).
[CrossRef]

T. Sato, Y. Kawaguchi, R. Kurosaki, A. Narazaki, W. Watanabe, and H. Niino, “Laser-induced backside wet etching employing green DPSS laser and liquid metallic absorber,” J. Laser Micro Nanoeng. 6, 204–208 (2011).
[CrossRef]

J. Laser Micro. Nanoeng.

S. Brückner, J. Hoffmeister, J. Ihlemann, C. Gerhard, S. Wieneke, and W. Viöl, “Hybrid laser-plasma micro-structuring of fused silica based on surface reduction by a low-temperature atmospheric pressure plasma,” J. Laser Micro. Nanoeng. 7, 73–76 (2012).
[CrossRef]

J. Micromech. Microeng.

T. Akashi, and Y. Yoshimura, “Deep reactive ion etching of borosilicate glass using an anodically bonded silicon wafer as an etching mask,” J. Micromech. Microeng. 16, 1051–1056 (2006).
[CrossRef]

K. Kolari, V. Saarela, and S. Franssila, “Deep plasma etching of glass for fluidic devices with different mask materials,” J. Micromech. Microeng. 18, 064010 (2008).
[CrossRef]

J. Vac. Sci. Technol. A

X. Li, L. Ling, X. Hua, M. Fukasawa, and G. S. Oehrlein, “Effects of Ar and O2 additives on SiO2 etching in C4F8-based plasmas,” J. Vac. Sci. Technol. A 21, 284–293 (2003).
[CrossRef]

Mater. Test.

S. Brückner, S. Rösner, C. Gerhard, S. Wieneke, and W. Viöl, “Plasma-based ionisation spectroscopy for material analysis,” Mater. Test. 53, 639–642 (2011).

Microelectron. Eng.

J. H. Parka, N.-E. Lee, J. Lee, J. S. Park, and H. D. Park, “Deep dry etching of borosilicate glass using SF6 and SF6/Ar inductively coupled plasmas,” Microelectron. Eng. 82, 119–128 (2005).
[CrossRef]

New J. Phys.

A. Helmke, D. Hoffmeister, N. Mertens, S. Emmert, J. Schuette, and W. Viöl, “The acidification of lipid film surfaces by non-thermal DBD at atmospheric pressure in air,” New J. Phys. 11, 115025 (2009).
[CrossRef]

Opt. Lett.

Opt. Photonik

T. Thöniss, G. Adams, and C. Gerhard, “Optical system design—software tools cover envelope calculations to the final engineering drawings,” Opt. Photonik 4, 30–33 (2009).
[CrossRef]

Plasma Sources Sci. Technol.

B. Niermann, R. Reuter, T. Kuschel, J. Benedikt, M. Böke, and J. Winter, “Argon metastable dynamics in a filamentary jet micro-discharge at atmospheric pressure,” Plasma Sources Sci. Technol. 21, 034002 (2012).
[CrossRef]

Sens. Actuators A

X. Li, T. Abe, and M. Esashi, “Deep reactive ion etching of Pyrex glass using SF6 plasma,” Sens. Actuators A 87, 139–145 (2001).
[CrossRef]

Spectrochim. Acta B

C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, “Atmospheric pressure plasmas: a review,” Spectrochim. Acta B 61, 2–30 (2006).
[CrossRef]

Thin Solid Films

S. Nikumb, Q. Chen, C. Li, H. Reshef, H. Y. Zheng, H. Qiu, and D. Low, “Precision glass machining, drilling and profile cutting by short pulse lasers,” Thin Solid Films 477, 216–221 (2005).
[CrossRef]

Vacuum

P. W. Leech, “Reactive ion etching of quartz and silica-based glasses in CF4/CHF3 plasmas,” Vacuum 55, 191–196 (1999).
[CrossRef]

Other

Schott AG, Datasheet: Optical Glass Catalog (2011).

A. Paul, Chemistry of Glasses (Chapman and Hall, 1990).

W. Masterton, E. Slowinski, and C. Stanitski, Chemical Principles (Saunders College, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Common-path laser plasma setup for glass processing.

Fig. 2.
Fig. 2.

SEM images of laser ablated (top) and laser-plasma ablated (bottom) barite crown glass N-BaK4.

Fig. 3.
Fig. 3.

SEM images of laser ablated (top) and laser-plasma ablated (bottom) heavy flint glass SF5.

Fig. 4.
Fig. 4.

Ablation depth versus number of pulses for N-BaK4 (left) and SF5 (right).

Fig. 5.
Fig. 5.

Ablated volume versus number of pulses for N-BaK4 (left) and SF5 (right).

Tables (3)

Tables Icon

Table 1. Comparison of the Arithmetic Mean Roughness Ra, Root Mean Squared Roughness Rq, and Particular Percentage Change Δ of N-BaK4 and SF5 Surfaces Before and After Plasma Treatment

Tables Icon

Table 2. Comparison of Surface Energy γ, Resulting Strength σ, and Particular Percentage Change Δ of N-BaK4 and SF5 Surfaces Before and After Plasma Treatment

Tables Icon

Table 3. Binding Energy Eb of Main Compounds of Investigated Glasses, Calculated from Standard Enthalpies of Formation ΔHf0 [36]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ=2·E·γd.

Metrics